{"title":"Geometric Edge Modelling in Self-Supervised Learning for Enhanced Indoor Depth Estimation","authors":"Niclas Joswig, Laura Ruotsalainen","doi":"10.1049/cvi2.70026","DOIUrl":null,"url":null,"abstract":"<p>Recently, the accuracy of self-supervised deep learning models for indoor depth estimation has approached that of supervised models by improving the supervision in planar regions. However, a common issue with integrating multiple planar priors is the generation of <i>oversmooth</i> depth maps, leading to unrealistic and erroneous depth representations at edges. Despite the fact that edge pixels only cover a small part of the image, they are of high significance for downstream tasks such as visual odometry, where image features, essential for motion computation, are mostly located at edges. To improve erroneous depth predictions at edge regions, we delve into the self-supervised training process, identifying its limitations and using these insights to develop a geometric edge model. Building on this, we introduce a novel algorithm that utilises the smooth depth predictions of existing models and colour image data to accurately identify edge pixels. After finding the edge pixels, our approach generates targeted self-supervision in these zones by interpolating depth values from adjacent planar areas towards the edges. We integrate the proposed algorithms into a novel loss function that encourages neural networks to predict sharper and more accurate depth edges in indoor scenes. To validate our methodology, we incorporated the proposed edge-enhancing loss function into a state-of-the-art self-supervised depth estimation framework. Our results demonstrate a notable improvement in the accuracy of edge depth predictions and a 19% improvement in visual odometry when using our depth model to generate RGB-D input, compared to the baseline model.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.70026","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.70026","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, the accuracy of self-supervised deep learning models for indoor depth estimation has approached that of supervised models by improving the supervision in planar regions. However, a common issue with integrating multiple planar priors is the generation of oversmooth depth maps, leading to unrealistic and erroneous depth representations at edges. Despite the fact that edge pixels only cover a small part of the image, they are of high significance for downstream tasks such as visual odometry, where image features, essential for motion computation, are mostly located at edges. To improve erroneous depth predictions at edge regions, we delve into the self-supervised training process, identifying its limitations and using these insights to develop a geometric edge model. Building on this, we introduce a novel algorithm that utilises the smooth depth predictions of existing models and colour image data to accurately identify edge pixels. After finding the edge pixels, our approach generates targeted self-supervision in these zones by interpolating depth values from adjacent planar areas towards the edges. We integrate the proposed algorithms into a novel loss function that encourages neural networks to predict sharper and more accurate depth edges in indoor scenes. To validate our methodology, we incorporated the proposed edge-enhancing loss function into a state-of-the-art self-supervised depth estimation framework. Our results demonstrate a notable improvement in the accuracy of edge depth predictions and a 19% improvement in visual odometry when using our depth model to generate RGB-D input, compared to the baseline model.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf