Gaurav Jadav, Sandhya Dodia, Pradhumansinh Kher, Priyank Shah, Dharmesh Kataria, Ranjan C. Khunt, D. K. Dhruv, Bharat Kataria, Vaibhav Bhatt, J. H. Markna
{"title":"Aucubin as a Natural Therapeutic and Optical Material: A Computational Study on Its Structural, Spectroscopic, and Photonic Properties","authors":"Gaurav Jadav, Sandhya Dodia, Pradhumansinh Kher, Priyank Shah, Dharmesh Kataria, Ranjan C. Khunt, D. K. Dhruv, Bharat Kataria, Vaibhav Bhatt, J. H. Markna","doi":"10.1002/qua.70054","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The structural and electronic properties of Aucubin, a bioactive iridoid glycoside, were thoroughly investigated using Density Functional Theory (DFT) with the B3LYP functional and the 6-311++G(d,p) basis set. Geometry optimization, energy computations, and electronic characteristics were determined, yielding an ultimate energy value of −1261.3556 Hartree. Natural atomic charges (NAC), frontier molecular orbitals (FMO), and molecular electrostatic potential (MEP) maps were examined to elucidate the compound's reactivity and stability. Additionally, simulation-based spectroscopic analyses, including FTIR, UV–Vis, and NMR, were performed to characterize the vibrational and electronic transitions of Aucubin. The findings indicate a narrow HOMO-LUMO gap (0.16189 a.u.), suggesting significant chemical reactivity and potential applicability in photonic communication devices. This comprehensive study enhances our understanding of Aucubin's structural and electronic properties, paving the way for future applications in pharmaceutical and photonic fields.</p>\n </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"125 10","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.70054","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The structural and electronic properties of Aucubin, a bioactive iridoid glycoside, were thoroughly investigated using Density Functional Theory (DFT) with the B3LYP functional and the 6-311++G(d,p) basis set. Geometry optimization, energy computations, and electronic characteristics were determined, yielding an ultimate energy value of −1261.3556 Hartree. Natural atomic charges (NAC), frontier molecular orbitals (FMO), and molecular electrostatic potential (MEP) maps were examined to elucidate the compound's reactivity and stability. Additionally, simulation-based spectroscopic analyses, including FTIR, UV–Vis, and NMR, were performed to characterize the vibrational and electronic transitions of Aucubin. The findings indicate a narrow HOMO-LUMO gap (0.16189 a.u.), suggesting significant chemical reactivity and potential applicability in photonic communication devices. This comprehensive study enhances our understanding of Aucubin's structural and electronic properties, paving the way for future applications in pharmaceutical and photonic fields.
期刊介绍:
Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.