Generating subspace lattices, their direct products, and their direct powers

IF 0.5 Q3 MATHEMATICS
Gábor Czédli
{"title":"Generating subspace lattices, their direct products, and their direct powers","authors":"Gábor Czédli","doi":"10.1007/s44146-024-00145-7","DOIUrl":null,"url":null,"abstract":"<div><p>In 2008, László Zádori proved that the lattice <span>\\(Sub (V) \\)</span> of all subspaces of a vector space <i>V</i> of finite dimension at least 3 over a finite field <i>F</i> has a 5-element generating set; in other words, <span>\\(Sub (V) \\)</span> is 5-generated. We prove that the same holds over every 1- or 2-generated field; in particular, over every field that is a finite degree extension of its prime field. Furthermore, let <i>F</i>, <i>t</i>, <i>V</i>, <span>\\(d\\ge 3\\)</span>, <span>\\(\\lfloor d/2\\rfloor \\)</span>, and <i>m</i> denote an arbitrary field, the minimum cardinality of a generating set of <i>F</i>, a finite dimensional vector space over <i>F</i>, the dimension (assumed to be at least 3) of <i>V</i>, the integer part of <i>d</i>/2, and the least cardinal such that <span>\\(m\\lfloor d^2/4\\rfloor \\)</span> is at least <i>t</i>, respectively. We prove that <span>\\(Sub (V) \\)</span> is <span>\\((4+m)\\)</span>-generated but none of its generating sets is of size less than <i>m</i>. Moreover, the <i>k</i>th direct power of <span>\\(Sub (V) \\)</span> is <span>\\((5+m)\\)</span>-generated for many positive integers <i>k</i>; for all positive integers <i>k</i> if <i>F</i> is infinite. Finally, let <i>n</i> be a positive integer. For <span>\\(i=1,\\dots , n\\)</span>, let <span>\\(p_i\\)</span> be a prime number or 0, and let <span>\\(V_i\\)</span> be the 3-dimensional vector space over the prime field of characteristic <span>\\(p_i\\)</span>. We prove that the direct product of the lattices <span>\\(Sub (V_1) \\)</span>, ..., <span>\\(Sub (V_n) \\)</span> is 4-generated if and only if each of the numbers <span>\\(p_1\\)</span>, ..., <span>\\(p_n\\)</span> occurs at most four times in the sequence <span>\\(p_1\\)</span>, ..., <span>\\(p_n\\)</span>. Neither this direct product nor any of the subspace lattices <span>\\(Sub (V) \\)</span> above is 3-generated.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"91 1-2","pages":"23 - 55"},"PeriodicalIF":0.5000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-024-00145-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In 2008, László Zádori proved that the lattice \(Sub (V) \) of all subspaces of a vector space V of finite dimension at least 3 over a finite field F has a 5-element generating set; in other words, \(Sub (V) \) is 5-generated. We prove that the same holds over every 1- or 2-generated field; in particular, over every field that is a finite degree extension of its prime field. Furthermore, let F, t, V, \(d\ge 3\), \(\lfloor d/2\rfloor \), and m denote an arbitrary field, the minimum cardinality of a generating set of F, a finite dimensional vector space over F, the dimension (assumed to be at least 3) of V, the integer part of d/2, and the least cardinal such that \(m\lfloor d^2/4\rfloor \) is at least t, respectively. We prove that \(Sub (V) \) is \((4+m)\)-generated but none of its generating sets is of size less than m. Moreover, the kth direct power of \(Sub (V) \) is \((5+m)\)-generated for many positive integers k; for all positive integers k if F is infinite. Finally, let n be a positive integer. For \(i=1,\dots , n\), let \(p_i\) be a prime number or 0, and let \(V_i\) be the 3-dimensional vector space over the prime field of characteristic \(p_i\). We prove that the direct product of the lattices \(Sub (V_1) \), ..., \(Sub (V_n) \) is 4-generated if and only if each of the numbers \(p_1\), ..., \(p_n\) occurs at most four times in the sequence \(p_1\), ..., \(p_n\). Neither this direct product nor any of the subspace lattices \(Sub (V) \) above is 3-generated.

生成子空间格,它们的直积,和它们的直幂
2008年László Zádori证明了有限域F上有限维数至少为3的向量空间V的所有子空间的格\(Sub (V) \)具有5元生成集;也就是说,\(Sub (V) \)是5生成的。我们证明了同样的定理适用于每一个1或2生成的域;特别地,在每个域上,它是素域的有限次扩展。此外,设F、t、V、\(d\ge 3\)、\(\lfloor d/2\rfloor \)和m分别表示任意域、F的生成集的最小基数、F上的有限维向量空间、V的维数(假设至少为3)、d/2的整数部分以及使\(m\lfloor d^2/4\rfloor \)至少为t的最小基数。我们证明了\(Sub (V) \)是\((4+m)\)生成的,但其生成集的大小都不小于m。并且,对于许多正整数k, \(Sub (V) \)的第k次幂是\((5+m)\)生成的;对于所有正整数k,如果F是无限大。最后,设n为正整数。对于\(i=1,\dots , n\),设\(p_i\)为质数或0,设\(V_i\)为特征\(p_i\)的质数域上的三维向量空间。我们证明了两个格的直积\(Sub (V_1) \),…, \(Sub (V_n) \)是4生成当且仅当每个数字\(p_1\),…, \(p_n\)在序列\(p_1\),…中最多出现四次。, \(p_n\)。这个直积和上面的任何子空间格\(Sub (V) \)都不是3生成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信