Generating some large filters of quasiorder lattices

IF 0.6 Q3 MATHEMATICS
Gábor Czédli
{"title":"Generating some large filters of quasiorder lattices","authors":"Gábor Czédli","doi":"10.1007/s44146-024-00139-5","DOIUrl":null,"url":null,"abstract":"<div><p>For a poset <span>\\((P;\\le )\\)</span>, the quasiorders (AKA preorders) extending the poset order “<span>\\(\\le \\)</span>” form a complete lattice <i>F</i>, which is a filter in the lattice of all quasiorders of the set <i>P</i>. We prove that if the poset order “<span>\\(\\le \\)</span>” is small, then <i>F</i> can be generated by few elements.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"91 1-2","pages":"1 - 21"},"PeriodicalIF":0.6000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-024-00139-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a poset \((P;\le )\), the quasiorders (AKA preorders) extending the poset order “\(\le \)” form a complete lattice F, which is a filter in the lattice of all quasiorders of the set P. We prove that if the poset order “\(\le \)” is small, then F can be generated by few elements.

Abstract Image

生成一些大的拟序格滤波器
对于一个偏序集\((P;\le )\),扩展偏序“\(\le \)”的拟序(又称预序)形成一个完备格F,它是集合p的所有拟序格中的一个滤波器。我们证明了如果偏序“\(\le \)”很小,则F可以由很少的元素生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信