Gas-Droplet Turbulent Jets with Phase Transitions and Droplet Collisions

IF 0.6 4区 工程技术 Q4 MECHANICS
Yu. V. Zuev
{"title":"Gas-Droplet Turbulent Jets with Phase Transitions and Droplet Collisions","authors":"Yu. V. Zuev","doi":"10.1134/S0015462824603437","DOIUrl":null,"url":null,"abstract":"<div><p>The effect of phase transitions and droplet collisions on the parameters of a gas-droplet non-isothermal turbulent jet is studied numerically using the developed mathematical model of the jet. When carrying out the mathematical modeling of two-phase jet flow, the case of flow out of a heterogeneous medium from a nozzle into steady gas with the temperature significantly higher than the temperature of the phases at the nozzle exit is considered. The calculations carried out for various volume concentrations of droplets at the nozzle exit (in the initial jet cross-section) showed that at the concentration of the order of 10<sup>–4</sup>, the droplet collisions do not have a significant effect on the jet parameters; this effect begins to manifest itself at an initial droplet concentration of the order of 5 × 10<sup>–4</sup> and becomes noticeable at the concentration equal to 10<sup>–3</sup>. As distinct from droplet collisions, phase transitions have a noticeable effect on the jet parameters over the entire considered range of variation in the initial droplet concentration from 10<sup>–4</sup> to 10<sup>–3</sup>.</p></div>","PeriodicalId":560,"journal":{"name":"Fluid Dynamics","volume":"60 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0015462824603437","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The effect of phase transitions and droplet collisions on the parameters of a gas-droplet non-isothermal turbulent jet is studied numerically using the developed mathematical model of the jet. When carrying out the mathematical modeling of two-phase jet flow, the case of flow out of a heterogeneous medium from a nozzle into steady gas with the temperature significantly higher than the temperature of the phases at the nozzle exit is considered. The calculations carried out for various volume concentrations of droplets at the nozzle exit (in the initial jet cross-section) showed that at the concentration of the order of 10–4, the droplet collisions do not have a significant effect on the jet parameters; this effect begins to manifest itself at an initial droplet concentration of the order of 5 × 10–4 and becomes noticeable at the concentration equal to 10–3. As distinct from droplet collisions, phase transitions have a noticeable effect on the jet parameters over the entire considered range of variation in the initial droplet concentration from 10–4 to 10–3.

Abstract Image

具有相变和液滴碰撞的气滴湍流射流
利用建立的气滴非等温湍流射流数学模型,数值研究了相变和液滴碰撞对气滴非等温湍流射流参数的影响。在对两相射流进行数学建模时,考虑了非均质介质从喷嘴流出进入稳定气体的情况,该气体的温度明显高于喷嘴出口处的相温度。对喷嘴出口处(初始射流截面)不同体积浓度的液滴进行了计算,结果表明,在10-4量级的浓度下,液滴碰撞对射流参数的影响不显著;这种效应在液滴初始浓度为5 × 10-4数量级时开始显现,并在浓度等于10-3时变得明显。与液滴碰撞不同的是,在整个考虑的初始液滴浓度从10-4到10-3的变化范围内,相变对射流参数有明显的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fluid Dynamics
Fluid Dynamics MECHANICS-PHYSICS, FLUIDS & PLASMAS
CiteScore
1.30
自引率
22.20%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Fluid Dynamics is an international peer reviewed journal that publishes theoretical, computational, and experimental research on aeromechanics, hydrodynamics, plasma dynamics, underground hydrodynamics, and biomechanics of continuous media. Special attention is given to new trends developing at the leading edge of science, such as theory and application of multi-phase flows, chemically reactive flows, liquid and gas flows in electromagnetic fields, new hydrodynamical methods of increasing oil output, new approaches to the description of turbulent flows, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信