{"title":"Three-Dimensional Simulation of Drop-on-Drop Impact: Coaxial and Offset Dynamics","authors":"Umesh, N. K. Singh","doi":"10.1134/S0015462824604881","DOIUrl":null,"url":null,"abstract":"<p>The dynamics of a droplet impacting a planar solid substrate was captured through a comprehensive three-dimensional computational analysis. The ANSYS Fluent software was employed to implement the dynamic contact angle model in conjunction with the volume of fluid (VOF) technique. The simulation has been carried out for a single drop impact as well as drop-on-drop impact. The drop-on-drop impact study has been carried out in both coaxial and offset impact cases. The effect of offset has also been studied on the droplet evolution after impacting the sessile droplet resting on a solid surface. The evolution of droplet, including spreading, receding and bounce off, is found to be accelerated in the case of single droplet impact as compared to the coaxial drop-on-drop impact. It is observed that for the drop-on-drop impact, the combined droplet bounces off the surface earlier in the coaxial impact case. The spreading diameter reaches its maxima earlier at the higher offset values. The combined droplet gets detached from the surface at the lower offset value while it remains attached to the surface at the higher offset values.</p>","PeriodicalId":560,"journal":{"name":"Fluid Dynamics","volume":"60 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0015462824604881","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The dynamics of a droplet impacting a planar solid substrate was captured through a comprehensive three-dimensional computational analysis. The ANSYS Fluent software was employed to implement the dynamic contact angle model in conjunction with the volume of fluid (VOF) technique. The simulation has been carried out for a single drop impact as well as drop-on-drop impact. The drop-on-drop impact study has been carried out in both coaxial and offset impact cases. The effect of offset has also been studied on the droplet evolution after impacting the sessile droplet resting on a solid surface. The evolution of droplet, including spreading, receding and bounce off, is found to be accelerated in the case of single droplet impact as compared to the coaxial drop-on-drop impact. It is observed that for the drop-on-drop impact, the combined droplet bounces off the surface earlier in the coaxial impact case. The spreading diameter reaches its maxima earlier at the higher offset values. The combined droplet gets detached from the surface at the lower offset value while it remains attached to the surface at the higher offset values.
期刊介绍:
Fluid Dynamics is an international peer reviewed journal that publishes theoretical, computational, and experimental research on aeromechanics, hydrodynamics, plasma dynamics, underground hydrodynamics, and biomechanics of continuous media. Special attention is given to new trends developing at the leading edge of science, such as theory and application of multi-phase flows, chemically reactive flows, liquid and gas flows in electromagnetic fields, new hydrodynamical methods of increasing oil output, new approaches to the description of turbulent flows, etc.