An Advanced Approach for Understory Terrain Extraction Utilizing TomoSAR and MCSF Algorithm

Xi Bin;Zhang Yu;Li Wenmei;Zhao Lei;Xu Kunpeng;Ma Yunmei;He Yuhong
{"title":"An Advanced Approach for Understory Terrain Extraction Utilizing TomoSAR and MCSF Algorithm","authors":"Xi Bin;Zhang Yu;Li Wenmei;Zhao Lei;Xu Kunpeng;Ma Yunmei;He Yuhong","doi":"10.1109/LGRS.2025.3565785","DOIUrl":null,"url":null,"abstract":"The understory terrain is an essential component of forest vertical structure and ecosystem health, providing crucial insights for resource assessment and forestry surveys. This letter proposes a novel method for extracting understory terrain through forest backscattering power profiles and the modified cloth simulation filtering (MCSF) algorithm. It innovatively reconstructs synthetic aperture radar (SAR) signals into a 3-D point cloud, eliminating sidelobe signals to reduce noise while only retaining the mainlobe signals. The MCSF algorithm is subsequently utilized to extract ground and nonground points based on the vertical distribution of the mainlobe signals. The extracted ground points offer a more precise representation of actual terrain conditions. The feasibility of the method was validated utilizing airborne P-band multi baseline SAR data obtained from the Saihanba test site in Hebei Province. The outcomes clearly indicate that our approach exhibits superior correlation (0.999) and a smaller root mean square error (RMSE) (3.07 m) in comparison to conventional methods when compared with the reference digital elevation model (DEM).","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10980315/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The understory terrain is an essential component of forest vertical structure and ecosystem health, providing crucial insights for resource assessment and forestry surveys. This letter proposes a novel method for extracting understory terrain through forest backscattering power profiles and the modified cloth simulation filtering (MCSF) algorithm. It innovatively reconstructs synthetic aperture radar (SAR) signals into a 3-D point cloud, eliminating sidelobe signals to reduce noise while only retaining the mainlobe signals. The MCSF algorithm is subsequently utilized to extract ground and nonground points based on the vertical distribution of the mainlobe signals. The extracted ground points offer a more precise representation of actual terrain conditions. The feasibility of the method was validated utilizing airborne P-band multi baseline SAR data obtained from the Saihanba test site in Hebei Province. The outcomes clearly indicate that our approach exhibits superior correlation (0.999) and a smaller root mean square error (RMSE) (3.07 m) in comparison to conventional methods when compared with the reference digital elevation model (DEM).
基于TomoSAR和MCSF算法的林下地形提取方法
林下地形是森林垂直结构和生态系统健康的重要组成部分,为资源评价和林业调查提供了重要的见解。本文提出了一种利用森林后向散射功率曲线和改进的布模拟滤波(MCSF)算法提取林下地形的新方法。它创新地将合成孔径雷达(SAR)信号重构为三维点云,在保留主瓣信号的同时消除副瓣信号以降低噪声。然后利用MCSF算法根据主瓣信号的垂直分布提取地和非地点。提取的地面点可以更精确地表示实际地形条件。利用河北省塞罕坝试验场机载p波段多基线SAR数据验证了该方法的可行性。结果清楚地表明,与传统方法相比,我们的方法与参考数字高程模型(DEM)相比具有更高的相关性(0.999)和更小的均方根误差(RMSE) (3.07 m)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信