DoNext: An Open-Access Measurement Dataset for Machine Learning-Driven 5G Mobile Network Analysis

Hendrik Schippers;Melina Geis;Stefan Böcker;Christian Wietfeld
{"title":"DoNext: An Open-Access Measurement Dataset for Machine Learning-Driven 5G Mobile Network Analysis","authors":"Hendrik Schippers;Melina Geis;Stefan Böcker;Christian Wietfeld","doi":"10.1109/TMLCN.2025.3564239","DOIUrl":null,"url":null,"abstract":"Future mobile use cases such as teleoperation rely on highly available mobile networks. Due to the nature of the mobile access channel and the inherent competition, the availability may be restricted in certain initially unknown areas or timespans. We automated mobile network data acquisition using a smartphone application and dedicated hardware to address this challenge, providing detailed connectivity insights. DoNext, a massive dataset of 4G and 5G mobile network data and active measurements, was collected over two years in Dortmund, Germany. To the best ofour knowledge, it is the most extensive openly available mobile dataset. Machine learning methods were applied to the data to demonstrate its utility inkey performance indicator prediction. Radio environmental maps facilitating key performance indicator predictions and application planning across different locations are generated through spatial aggregation for in-advance predictions. We also showcase signal strength modeling with transfer learning for arbitrary locations in individual mobile network cells, covering private and restricted areas. By openly providing the dataset, we aim to enable other researchers to develop and evaluate their machine-learning methods without conducting extensive measurement campaigns.","PeriodicalId":100641,"journal":{"name":"IEEE Transactions on Machine Learning in Communications and Networking","volume":"3 ","pages":"585-604"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10976440","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Machine Learning in Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10976440/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Future mobile use cases such as teleoperation rely on highly available mobile networks. Due to the nature of the mobile access channel and the inherent competition, the availability may be restricted in certain initially unknown areas or timespans. We automated mobile network data acquisition using a smartphone application and dedicated hardware to address this challenge, providing detailed connectivity insights. DoNext, a massive dataset of 4G and 5G mobile network data and active measurements, was collected over two years in Dortmund, Germany. To the best ofour knowledge, it is the most extensive openly available mobile dataset. Machine learning methods were applied to the data to demonstrate its utility inkey performance indicator prediction. Radio environmental maps facilitating key performance indicator predictions and application planning across different locations are generated through spatial aggregation for in-advance predictions. We also showcase signal strength modeling with transfer learning for arbitrary locations in individual mobile network cells, covering private and restricted areas. By openly providing the dataset, we aim to enable other researchers to develop and evaluate their machine-learning methods without conducting extensive measurement campaigns.
donnext:用于机器学习驱动的5G移动网络分析的开放访问测量数据集
未来的移动用例(如远程操作)依赖于高度可用的移动网络。由于移动接入信道的性质和固有的竞争,可用性可能在某些最初未知的区域或时间范围内受到限制。我们使用智能手机应用程序和专用硬件自动化移动网络数据采集来解决这一挑战,提供详细的连接洞察。DoNext是在德国多特蒙德历时两年收集的4G和5G移动网络数据和主动测量数据集。据我们所知,这是最广泛的公开可用移动数据集。将机器学习方法应用于数据,以证明其在关键性能指标预测中的实用性。通过空间聚合生成无线电环境地图,促进关键性能指标预测和跨不同地点的应用规划,以便进行提前预测。我们还展示了在覆盖私人和限制区域的单个移动网络单元中任意位置使用迁移学习的信号强度建模。通过公开提供数据集,我们的目标是使其他研究人员能够开发和评估他们的机器学习方法,而无需进行广泛的测量活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信