Bicao Li , Lijun Wang , Bei Wang , Zhuhong Shao , Jie Huang , Guangshuai Gao , Mengxing Song , Wei Li , Danting Niu
{"title":"A symmetrical parallel two-stream adaptive segmentation network for remote sensing images","authors":"Bicao Li , Lijun Wang , Bei Wang , Zhuhong Shao , Jie Huang , Guangshuai Gao , Mengxing Song , Wei Li , Danting Niu","doi":"10.1016/j.dsp.2025.105319","DOIUrl":null,"url":null,"abstract":"<div><div>Segmentation of remote sensing images plays an important role in various civil applications. Although some achievements of artificial intelligence have been made in the past, the current challenge of remote sensing image segmentation is mainly the inadequate capture of global and local features, which leads to poor target feature extraction. This paper proposes a parallel two-stream adaptive remote sensing image segmentation network with symmetric semantic reasoning and context awareness, which enhances the feature extraction ability and further improves the segmentation accuracy. The proposed network consists of a main stream and a subordinate flow. Specifically, main stream is mainly used to extract local features from remote sensing images. The subordinate flow obtains the global feature information of the image. In the two-stream network coding stage, a hierarchical aggregation module is proposed to achieve the purpose of mining the global and local features of remote sensing images. In addition, to further improve the discriminate power of multi-scale features, an adaptive semantic reasoning module is proposed to extract multi-scale features. Experiments are carried out on two commonly used data sets, and the experimental results prove the effectiveness of the proposed network.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"165 ","pages":"Article 105319"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200425003410","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Segmentation of remote sensing images plays an important role in various civil applications. Although some achievements of artificial intelligence have been made in the past, the current challenge of remote sensing image segmentation is mainly the inadequate capture of global and local features, which leads to poor target feature extraction. This paper proposes a parallel two-stream adaptive remote sensing image segmentation network with symmetric semantic reasoning and context awareness, which enhances the feature extraction ability and further improves the segmentation accuracy. The proposed network consists of a main stream and a subordinate flow. Specifically, main stream is mainly used to extract local features from remote sensing images. The subordinate flow obtains the global feature information of the image. In the two-stream network coding stage, a hierarchical aggregation module is proposed to achieve the purpose of mining the global and local features of remote sensing images. In addition, to further improve the discriminate power of multi-scale features, an adaptive semantic reasoning module is proposed to extract multi-scale features. Experiments are carried out on two commonly used data sets, and the experimental results prove the effectiveness of the proposed network.
期刊介绍:
Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal.
The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as:
• big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,