Data-driven vertiport siting: A comparative analysis of clustering methods for Urban Air Mobility

IF 6.1 Q1 GEOGRAPHY
Tao Guo, Hao Wu, Shahriar Iqbal Zame, Constantinos Antoniou
{"title":"Data-driven vertiport siting: A comparative analysis of clustering methods for Urban Air Mobility","authors":"Tao Guo,&nbsp;Hao Wu,&nbsp;Shahriar Iqbal Zame,&nbsp;Constantinos Antoniou","doi":"10.1016/j.urbmob.2025.100117","DOIUrl":null,"url":null,"abstract":"<div><div>Urban Air Mobility (UAM) has emerged as a promising solution to enhance metropolitan urban mobility. A critical determinant of UAM’s success is vertiport siting, which directly influences accessibility and travel time benefits. However, existing research lacks a evaluation of different data-driven clustering approaches for vertiport placement. This study systematically compares six clustering-based vertiport allocation strategies against an expert-defined benchmark (OBUAM) in the Munich Metropolitan Region (Ploetner et al., 2020). More specifically, the travel time efficiency improvements, accessibility enhancements, and transport equity impacts are assessed across different allocation scenarios. Results indicate that clustering-based siting significantly outperforms expert-defined siting in all the three perspectives. Notably, the K-means++ approach achieves the highest travel time saving (10.05%), accessibility gains (7.16%) and the lowest Gini coefficient (0.512), demonstrating its advantages in planing vertiport locations. The inferiority of DBSCAN, OBUAM and MS scenarios reveals that neither concentrating vertiports excessively in urban centers nor distributing them too evenly across the region optimizes transport efficiency. All clustering-based methods offer a practical, data-driven alternative that does not rely on domain expertise or excessive computational resources, making them easily adaptable for real-world UAM planning. Sensitivity analyses further explore the influence of key parameters on the indicators. Findings highlight that reducing pre-flight time has a more significant impact on travel time saving, accessibility and equity than increasing UAM cruise speed, while higher fares significantly disproportionately reduce accessibility benefits and equality.</div></div>","PeriodicalId":100852,"journal":{"name":"Journal of Urban Mobility","volume":"7 ","pages":"Article 100117"},"PeriodicalIF":6.1000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Urban Mobility","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667091725000196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

Urban Air Mobility (UAM) has emerged as a promising solution to enhance metropolitan urban mobility. A critical determinant of UAM’s success is vertiport siting, which directly influences accessibility and travel time benefits. However, existing research lacks a evaluation of different data-driven clustering approaches for vertiport placement. This study systematically compares six clustering-based vertiport allocation strategies against an expert-defined benchmark (OBUAM) in the Munich Metropolitan Region (Ploetner et al., 2020). More specifically, the travel time efficiency improvements, accessibility enhancements, and transport equity impacts are assessed across different allocation scenarios. Results indicate that clustering-based siting significantly outperforms expert-defined siting in all the three perspectives. Notably, the K-means++ approach achieves the highest travel time saving (10.05%), accessibility gains (7.16%) and the lowest Gini coefficient (0.512), demonstrating its advantages in planing vertiport locations. The inferiority of DBSCAN, OBUAM and MS scenarios reveals that neither concentrating vertiports excessively in urban centers nor distributing them too evenly across the region optimizes transport efficiency. All clustering-based methods offer a practical, data-driven alternative that does not rely on domain expertise or excessive computational resources, making them easily adaptable for real-world UAM planning. Sensitivity analyses further explore the influence of key parameters on the indicators. Findings highlight that reducing pre-flight time has a more significant impact on travel time saving, accessibility and equity than increasing UAM cruise speed, while higher fares significantly disproportionately reduce accessibility benefits and equality.
数据驱动的垂直机场选址:城市空中交通聚类方法的比较分析
城市空中交通(Urban Air Mobility, UAM)已成为增强城市交通的一种有前景的解决方案。UAM成功的一个关键决定因素是垂直位置,这直接影响到可达性和旅行时间的好处。然而,现有的研究缺乏对不同的数据驱动聚类方法的评估。本研究系统地比较了慕尼黑大都会地区六种基于聚类的垂直机场分配策略与专家定义基准(OBUAM) (Ploetner等人,2020)。更具体地说,在不同的分配方案中,评估了旅行时间效率的提高、可达性的增强和交通公平的影响。结果表明,基于聚类的选址在所有三个方面都明显优于专家定义的选址。值得注意的是,k - meme++方法节省的旅行时间最多(10.05%),可达性增加(7.16%),基尼系数最低(0.512),显示了其在规划垂直机场位置方面的优势。DBSCAN、OBUAM和MS情景的不足之处表明,无论是将垂直机场过度集中在城市中心,还是在区域内过于均匀地分布,都不能优化运输效率。所有基于聚类的方法都提供了一种实用的、数据驱动的替代方案,不依赖于领域专业知识或过多的计算资源,使它们很容易适应现实世界的UAM规划。敏感性分析进一步探讨了关键参数对指标的影响。研究结果强调,与提高UAM巡航速度相比,减少飞行前时间对节省旅行时间、可达性和公平性的影响更为显著,而更高的票价则显著降低了可达性和公平性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信