High-pressure stability and mechanical properties of manganese nitrides: A DFT study

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Assyl-Dastan B. Bazarbek , Nursultan E. Sagatov , Aitolkyn S. Omarkhan , Dinara N. Sagatova , Abdirash T. Akilbekov
{"title":"High-pressure stability and mechanical properties of manganese nitrides: A DFT study","authors":"Assyl-Dastan B. Bazarbek ,&nbsp;Nursultan E. Sagatov ,&nbsp;Aitolkyn S. Omarkhan ,&nbsp;Dinara N. Sagatova ,&nbsp;Abdirash T. Akilbekov","doi":"10.1016/j.commatsci.2025.113948","DOIUrl":null,"url":null,"abstract":"<div><div>Based on the evolutionary algorithms and the density functional theory, an extensive search for the stable manganese–nitrogen compounds and their structures was conducted in the pressure range of 0–200 GPa. As a result, one new manganese nitride Mn<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span>N<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> was predicted, and the stability fields of the manganese nitrides were determined. It was demonstrated that there are six stable compounds in the Mn–N system at a pressure up to 200 GPa, namely Mn<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>N, Mn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>N, Mn<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span>N<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, MnN, MnN<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, and MnN<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>. Mn<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>N is stable in the form of the <span><math><mrow><mi>P</mi><mover><mrow><mn>6</mn></mrow><mrow><mo>̄</mo></mrow></mover><mi>m</mi><mn>2</mn></mrow></math></span> structure up to 191 GPa without any structural phase transition, and above this pressure, it decomposes into the isochemical mixture. Mn<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>N has one stable modification <span><math><mrow><mi>P</mi><msub><mrow><mn>6</mn></mrow><mrow><mn>3</mn></mrow></msub><mo>/</mo><mi>m</mi><mi>m</mi><mi>c</mi></mrow></math></span>, which remains its stability in the entire considered pressure range. Previously unknown nitride Mn<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span>N<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> stabilizes above 180 GPa in the <span><math><mrow><mi>C</mi><mn>2</mn><mo>/</mo><mi>m</mi></mrow></math></span> structure. MnN<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> stabilizes above 8 GPa and has three stable modifications <span><math><mrow><mi>P</mi><msub><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msub><mo>/</mo><mi>m</mi></mrow></math></span>, <span><math><mrow><mi>P</mi><mover><mrow><mn>1</mn></mrow><mrow><mo>̄</mo></mrow></mover></mrow></math></span>, and <span><math><mrow><mi>C</mi><mi>m</mi><mi>c</mi><msub><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>. MnN<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-<span><math><mrow><mi>P</mi><mi>m</mi></mrow></math></span>, which has a narrow stability pressure range (145–147 GPa), was shown to be metastable when taking into account the zero-point energy contribution and the temperature effect. MnN<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> is formed above 38 GPa and has one stable modification <span><math><mrow><mi>P</mi><mover><mrow><mn>1</mn></mrow><mrow><mo>̄</mo></mrow></mover></mrow></math></span>. The calculations of phonon spectra and elastic constants indicate that all predicted manganese nitrides exhibit dynamic and mechanical stability in the corresponding pressure ranges. Meanwhile, for the first time, the <em>P–T</em> phase diagrams of Mn<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>N, Mn<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span>N<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, MnN<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, and MnN<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span> were successfully determined using the quasiharmonic approximation. In addition, for the predicted phases, the mechanical properties were estimated and, as a result, four manganese nitrides (namely MnN<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>-<span><math><mrow><mi>P</mi><mover><mrow><mn>1</mn></mrow><mrow><mo>̄</mo></mrow></mover></mrow></math></span>, Mn<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>N-<span><math><mrow><mi>P</mi><mover><mrow><mn>6</mn></mrow><mrow><mo>̄</mo></mrow></mover><mi>m</mi><mn>2</mn></mrow></math></span>, Mn<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span>N<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-<span><math><mrow><mi>C</mi><mn>2</mn><mo>/</mo><mi>m</mi></mrow></math></span>, and MnN<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-<span><math><mrow><mi>P</mi><msub><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msub><mo>/</mo><mi>m</mi></mrow></math></span>) were observed to be hard materials.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"256 ","pages":"Article 113948"},"PeriodicalIF":3.1000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025625002915","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the evolutionary algorithms and the density functional theory, an extensive search for the stable manganese–nitrogen compounds and their structures was conducted in the pressure range of 0–200 GPa. As a result, one new manganese nitride Mn5N2 was predicted, and the stability fields of the manganese nitrides were determined. It was demonstrated that there are six stable compounds in the Mn–N system at a pressure up to 200 GPa, namely Mn3N, Mn2N, Mn5N2, MnN, MnN2, and MnN4. Mn3N is stable in the form of the P6̄m2 structure up to 191 GPa without any structural phase transition, and above this pressure, it decomposes into the isochemical mixture. Mn2N has one stable modification P63/mmc, which remains its stability in the entire considered pressure range. Previously unknown nitride Mn5N2 stabilizes above 180 GPa in the C2/m structure. MnN2 stabilizes above 8 GPa and has three stable modifications P21/m, P1̄, and Cmc21. MnN2-Pm, which has a narrow stability pressure range (145–147 GPa), was shown to be metastable when taking into account the zero-point energy contribution and the temperature effect. MnN4 is formed above 38 GPa and has one stable modification P1̄. The calculations of phonon spectra and elastic constants indicate that all predicted manganese nitrides exhibit dynamic and mechanical stability in the corresponding pressure ranges. Meanwhile, for the first time, the P–T phase diagrams of Mn3N, Mn5N2, MnN2, and MnN4 were successfully determined using the quasiharmonic approximation. In addition, for the predicted phases, the mechanical properties were estimated and, as a result, four manganese nitrides (namely MnN4-P1̄, Mn3N-P6̄m2, Mn5N2-C2/m, and MnN2-P21/m) were observed to be hard materials.

Abstract Image

氮化锰的高压稳定性和力学性能:DFT研究
基于进化算法和密度泛函理论,在0 ~ 200 GPa的压力范围内对稳定的锰氮化合物及其结构进行了广泛的搜索。结果预测了一种新的氮化锰Mn5N2,并确定了氮化锰的稳定场。结果表明,在高达200gpa的压力下,Mn-N体系中存在Mn3N、Mn2N、Mn5N2、MnN、MnN2和MnN4 6种稳定化合物。Mn3N在191 GPa以下以P6 m2结构稳定存在,没有发生结构相变,在191 GPa以上分解为等化学混合物。Mn2N有一个稳定的改性P63/mmc,在整个考虑的压力范围内保持其稳定性。以前未知的氮化物Mn5N2在C2/m结构中稳定在180 GPa以上。MnN2稳定在8gpa以上,有三个稳定的修饰P21/m、P1 /和Cmc21。MnN2-Pm具有较窄的稳定压力范围(145 ~ 147 GPa),在考虑零点能量贡献和温度效应的情况下表现为亚稳态。MnN4在38gpa以上形成,有一个稳定的修饰P1 ā。声子谱和弹性常数的计算表明,所有预测的氮化锰在相应的压力范围内表现出动态和机械稳定性。同时,首次利用准谐波近似成功地确定了Mn3N、Mn5N2、MnN2和MnN4的P-T相图。此外,对预测相的力学性能进行了估计,结果发现四种氮化锰(MnN4-P1′,Mn3N-P6′m2, Mn5N2-C2/m和MnN2-P21/m)为硬质材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信