Integrated computational framework for the optimization of the microstructure in additive manufacturing of metals

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Victor D. Fachinotti , Sylvain Gouttebrozze , Stéphane Dumoulin , Xiaobo Ren
{"title":"Integrated computational framework for the optimization of the microstructure in additive manufacturing of metals","authors":"Victor D. Fachinotti ,&nbsp;Sylvain Gouttebrozze ,&nbsp;Stéphane Dumoulin ,&nbsp;Xiaobo Ren","doi":"10.1016/j.commatsci.2025.113944","DOIUrl":null,"url":null,"abstract":"<div><div>We present an integral multiscale computational framework for the optimization of the microstructure in metal additive manufacturing. It consists of four modules: (i) the optimization solver that systematically generates feasible designs, (ii) the macroscale module for determining temperature evolution along the deposition process and further cooling, (iii) the microscale module that computes the evolution of microstructure in the deposited part for the temperature histories computed in the previous step, and (iv) the assessment module that quantifies how good the microstructure of the as-deposited part is for each design. The macroscale module uses ABAQUS for the finite element analysis of nonlinear transient heat transfer. The microscale module is a fast metamodel of the multiphase-field model for multicomponent alloys from the microstructure simulation software MICRESS. This metamodel is based on the Johnson–Mehl–Avrami–Kolmogorov law for isothermal transformations, calibrated using MICRESS’ results, and extended to non-isothermal transformations by approximating them as a series of isothermal steps. The whole workflow is implemented into ISIGHT, a user-friendly software that provides a suite of visual tools to create simulation process flows. Finally, the laser directed energy deposition of duplex stainless steels, whose mechanical properties are highly dependent on the ferrite–austenite ratio, is taken as case study. Results show that the microstructure of the as-deposited part can be significantly improved.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"256 ","pages":"Article 113944"},"PeriodicalIF":3.1000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025625002873","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We present an integral multiscale computational framework for the optimization of the microstructure in metal additive manufacturing. It consists of four modules: (i) the optimization solver that systematically generates feasible designs, (ii) the macroscale module for determining temperature evolution along the deposition process and further cooling, (iii) the microscale module that computes the evolution of microstructure in the deposited part for the temperature histories computed in the previous step, and (iv) the assessment module that quantifies how good the microstructure of the as-deposited part is for each design. The macroscale module uses ABAQUS for the finite element analysis of nonlinear transient heat transfer. The microscale module is a fast metamodel of the multiphase-field model for multicomponent alloys from the microstructure simulation software MICRESS. This metamodel is based on the Johnson–Mehl–Avrami–Kolmogorov law for isothermal transformations, calibrated using MICRESS’ results, and extended to non-isothermal transformations by approximating them as a series of isothermal steps. The whole workflow is implemented into ISIGHT, a user-friendly software that provides a suite of visual tools to create simulation process flows. Finally, the laser directed energy deposition of duplex stainless steels, whose mechanical properties are highly dependent on the ferrite–austenite ratio, is taken as case study. Results show that the microstructure of the as-deposited part can be significantly improved.

Abstract Image

金属增材制造微结构优化集成计算框架
提出了一种用于金属增材制造微结构优化的集成多尺度计算框架。它由四个模块组成:(i)系统地生成可行设计的优化求解器,(ii)确定沉积过程和进一步冷却的温度演变的宏观模块,(iii)根据前一步计算的温度历史计算沉积部件中微观结构演变的微观模块,以及(iv)量化每种设计的沉积部件的微观结构的评估模块。宏观尺度模块使用ABAQUS进行非线性瞬态传热的有限元分析。微尺度模块是基于微结构模拟软件MICRESS的多组分合金多相场模型的快速元模型。该元模型基于等温变换的Johnson-Mehl-Avrami-Kolmogorov定律,使用MICRESS的结果进行校准,并通过将其近似为一系列等温步骤来扩展到非等温变换。整个工作流程在ISIGHT中实现,这是一个用户友好的软件,提供了一套可视化工具来创建模拟流程。最后,以激光定向能沉积双相不锈钢为例进行了研究,该双相不锈钢的力学性能与铁素体-奥氏体比密切相关。结果表明,该方法能显著改善沉积件的显微组织。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信