Dawid Dudkowski, Barbara Błażejczyk–Okolewska, Tomasz Kapitaniak
{"title":"Synchronous patterns in two pendula suspended on multi degrees of freedom support","authors":"Dawid Dudkowski, Barbara Błażejczyk–Okolewska, Tomasz Kapitaniak","doi":"10.1016/j.jsv.2025.119159","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the dynamics and possible synchronization scenarios of two pendula suspended on 3 DOF (three degrees of freedom) beam. The base has been equipped with supporting springs, allowing it to perform both translational and rotary oscillations (full plane motion). Depending on the parameters of the model, we have determined different regions of classical synchronous patterns, as well as uncovered more complex scenarios, including irregular motion and quasiperiodic synchronization. As we have observed, in particular cases the beam can begin to imitate an additional pendulum, performing oscillations with the amplitude comparable to the nodes. The co-existence of possible states has been studied and visualized using basins of attraction, and the properties of synchronous solutions have been discussed. Using the energy balance method, we have followed the energy flows within the system when the dynamics changes. The results presented in this paper have been collected using classical bifurcation tools and modern sample-based methods, showing that both approaches are complementary and can be applied in the analysis of complex nonlinear problems. Enhancing the freedom of motion of the supporting base, we can investigate more practical scenarios of coupled pendula and pendula-like systems, developing the synchronization theory and its use in solving modern engineering problems.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"613 ","pages":"Article 119159"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X25002330","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the dynamics and possible synchronization scenarios of two pendula suspended on 3 DOF (three degrees of freedom) beam. The base has been equipped with supporting springs, allowing it to perform both translational and rotary oscillations (full plane motion). Depending on the parameters of the model, we have determined different regions of classical synchronous patterns, as well as uncovered more complex scenarios, including irregular motion and quasiperiodic synchronization. As we have observed, in particular cases the beam can begin to imitate an additional pendulum, performing oscillations with the amplitude comparable to the nodes. The co-existence of possible states has been studied and visualized using basins of attraction, and the properties of synchronous solutions have been discussed. Using the energy balance method, we have followed the energy flows within the system when the dynamics changes. The results presented in this paper have been collected using classical bifurcation tools and modern sample-based methods, showing that both approaches are complementary and can be applied in the analysis of complex nonlinear problems. Enhancing the freedom of motion of the supporting base, we can investigate more practical scenarios of coupled pendula and pendula-like systems, developing the synchronization theory and its use in solving modern engineering problems.
期刊介绍:
The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application.
JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.