Accelerating crash simulations with Finite Element Method Integrated Networks (FEMIN): Comparing two approaches to replace large portions of a FEM simulation
Simon Thel , Lars Greve , Maximilian Karl , Patrick van der Smagt
{"title":"Accelerating crash simulations with Finite Element Method Integrated Networks (FEMIN): Comparing two approaches to replace large portions of a FEM simulation","authors":"Simon Thel , Lars Greve , Maximilian Karl , Patrick van der Smagt","doi":"10.1016/j.cma.2025.118046","DOIUrl":null,"url":null,"abstract":"<div><div>The Finite Element Method (FEM) is a widely used technique for simulating crash scenarios with high accuracy and reliability. To reduce the significant computational costs associated with FEM, the Finite Element Method Integrated Networks (FEMIN) framework integrates neural networks (NNs) with FEM solvers. We discuss two different approaches to integrate the predictions of NNs into explicit FEM simulation: A coupled approach predicting forces (f-FEMIN) and a newly introduced, uncoupled approach predicting kinematics (k-FEMIN). For the f-FEMIN approach, we introduce a novel adaption of the Deep Variational Bayes Filter (DVBF). The adapted DVBF outperforms deterministic NNs from a previous study in terms of accuracy. We investigate the differences of the two FEMIN approaches across two small-scale and one large-scale load case. Although the adaptation of the DVBF and the f-FEMIN approach offers good accuracy for the small-scale load cases, the k-FEMIN approach is superior for scaling to large-scale load cases. k-FEMIN shows its excellent acceleration of the FEM crash simulations without overhead during runtime and keeps compute costs during training low.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"443 ","pages":"Article 118046"},"PeriodicalIF":6.9000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525003184","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Finite Element Method (FEM) is a widely used technique for simulating crash scenarios with high accuracy and reliability. To reduce the significant computational costs associated with FEM, the Finite Element Method Integrated Networks (FEMIN) framework integrates neural networks (NNs) with FEM solvers. We discuss two different approaches to integrate the predictions of NNs into explicit FEM simulation: A coupled approach predicting forces (f-FEMIN) and a newly introduced, uncoupled approach predicting kinematics (k-FEMIN). For the f-FEMIN approach, we introduce a novel adaption of the Deep Variational Bayes Filter (DVBF). The adapted DVBF outperforms deterministic NNs from a previous study in terms of accuracy. We investigate the differences of the two FEMIN approaches across two small-scale and one large-scale load case. Although the adaptation of the DVBF and the f-FEMIN approach offers good accuracy for the small-scale load cases, the k-FEMIN approach is superior for scaling to large-scale load cases. k-FEMIN shows its excellent acceleration of the FEM crash simulations without overhead during runtime and keeps compute costs during training low.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.