A systematic review of sentiment analytics in banking headlines

Muhunthan Jayanthakumaran , Nagesh Shukla , Biswajeet Pradhan , Ghassan Beydoun
{"title":"A systematic review of sentiment analytics in banking headlines","authors":"Muhunthan Jayanthakumaran ,&nbsp;Nagesh Shukla ,&nbsp;Biswajeet Pradhan ,&nbsp;Ghassan Beydoun","doi":"10.1016/j.dajour.2025.100584","DOIUrl":null,"url":null,"abstract":"<div><div>This systematic review investigates sentiment analysis of news headlines in the banking sector, a field susceptible to public sentiment, as demonstrated by phenomena like bank runs leading to rapid deposit withdrawals. We trace the evolution of analytic methods from traditional machine learning to advanced deep learning models, notably Bidirectional Encoder Representations from Transformer (BERT) and Generative Pre-trained Transformer (GPT). Our study highlights their applications including headline generation, sentiment measurement, fake news detection, and analysis of political bias. Despite significant advancements, we uncover research gaps, such as the ineffective use of these methodologies in banking analysis, the underuse of GPT, and a focus on performance rather than practical application. Looking ahead, we note the increasing significance of Large Language Model (LLM), the untapped potential of headline analysis in banking, and the growing interest in this area spurred by rapid technological advancements. Our findings emphasise the pivotal role of sentiment analysis in deciphering market trends and improving decision making in finance, underscoring its strategic importance in the banking industry.</div></div>","PeriodicalId":100357,"journal":{"name":"Decision Analytics Journal","volume":"15 ","pages":"Article 100584"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Analytics Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772662225000402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This systematic review investigates sentiment analysis of news headlines in the banking sector, a field susceptible to public sentiment, as demonstrated by phenomena like bank runs leading to rapid deposit withdrawals. We trace the evolution of analytic methods from traditional machine learning to advanced deep learning models, notably Bidirectional Encoder Representations from Transformer (BERT) and Generative Pre-trained Transformer (GPT). Our study highlights their applications including headline generation, sentiment measurement, fake news detection, and analysis of political bias. Despite significant advancements, we uncover research gaps, such as the ineffective use of these methodologies in banking analysis, the underuse of GPT, and a focus on performance rather than practical application. Looking ahead, we note the increasing significance of Large Language Model (LLM), the untapped potential of headline analysis in banking, and the growing interest in this area spurred by rapid technological advancements. Our findings emphasise the pivotal role of sentiment analysis in deciphering market trends and improving decision making in finance, underscoring its strategic importance in the banking industry.
对银行业头条新闻中情绪分析的系统回顾
这篇系统综述调查了银行业新闻标题的情绪分析,这是一个容易受到公众情绪影响的领域,如银行挤兑导致快速存款提取等现象所证明的那样。我们追溯了分析方法从传统机器学习到高级深度学习模型的演变,特别是双向编码器表示从变压器(BERT)和生成预训练变压器(GPT)。我们的研究强调了它们的应用,包括标题生成、情绪测量、假新闻检测和政治偏见分析。尽管取得了重大进展,但我们发现了研究差距,例如这些方法在银行分析中的使用效率低下,GPT的使用不足,以及关注绩效而不是实际应用。展望未来,我们注意到大型语言模型(LLM)的重要性日益增加,标题分析在银行业尚未开发的潜力,以及快速的技术进步刺激了对这一领域日益增长的兴趣。我们的研究结果强调了情绪分析在解读市场趋势和改善金融决策方面的关键作用,强调了其在银行业中的战略重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信