Probability propagation for path planning in unknown environments

Giovanni Di Gennaro , Amedeo Buonanno , Giovanni Fioretti , Francesco Verolla , Francesco A.N. Palmieri , Krishna R. Pattipati
{"title":"Probability propagation for path planning in unknown environments","authors":"Giovanni Di Gennaro ,&nbsp;Amedeo Buonanno ,&nbsp;Giovanni Fioretti ,&nbsp;Francesco Verolla ,&nbsp;Francesco A.N. Palmieri ,&nbsp;Krishna R. Pattipati","doi":"10.1016/j.iswa.2025.200527","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a probability propagation framework for path planning on discrete grids where an agent can navigate in an unknown environment to discover new areas and goals. We introduce a technique in which the probabilistic backward flow provides guidance towards discovering multiple distributed goals and hidden regions. This is achieved using a maximum likelihood path estimation framework in which the hidden areas become constrained goals that “attract” the agent. Simulations on various grids are included in the paper. The results show how this idea, applied to a completely unknown environment and goal position, may provide a unifying and powerful method for distributed dynamic path planning.</div></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"26 ","pages":"Article 200527"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667305325000535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a probability propagation framework for path planning on discrete grids where an agent can navigate in an unknown environment to discover new areas and goals. We introduce a technique in which the probabilistic backward flow provides guidance towards discovering multiple distributed goals and hidden regions. This is achieved using a maximum likelihood path estimation framework in which the hidden areas become constrained goals that “attract” the agent. Simulations on various grids are included in the paper. The results show how this idea, applied to a completely unknown environment and goal position, may provide a unifying and powerful method for distributed dynamic path planning.
未知环境下路径规划的概率传播
我们提出了一个概率传播框架,用于离散网格上的路径规划,其中智能体可以在未知环境中导航以发现新的区域和目标。我们介绍了一种概率逆向流技术,该技术为发现多个分布式目标和隐藏区域提供指导。这是使用最大似然路径估计框架实现的,其中隐藏区域成为“吸引”代理的约束目标。文中还对各种网格进行了仿真。结果表明,将该思想应用于完全未知的环境和目标位置,可以为分布式动态路径规划提供统一而强大的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信