Nima Esmi , Asadollah Shahbahrami , Georgi Gaydadjiev , Peter de Jonge
{"title":"Suicide ideation detection based on documents dimensionality expansion","authors":"Nima Esmi , Asadollah Shahbahrami , Georgi Gaydadjiev , Peter de Jonge","doi":"10.1016/j.compbiomed.2025.110266","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate and secure classifying informal documents related to mental disorders is challenging due to factors such as informal language, noisy data, cultural differences, personal information and mixed emotions. Conventional deep learning models often struggle to capture patterns in informal text, as they miss long-range dependencies, explain words and phrases literally, and have difficulty processing non-standard inputs like emojis. To address these limitations, we expand data dimensionality, transforming and fusing textual data and signs from a 1D to a 2D space. This enables the use of pre-trained 2D CNN models, such as AlexNet, Restnet-50, and VGG-16 removing the need to design and train new models from scratch. We apply this approach to a dataset of social media posts to classify informal documents as either related to suicide or non-suicide content. Our results demonstrate high classification accuracy, exceeding 99%. In addition, our 2D visual data representation conceals individual private information and helps explainability.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"192 ","pages":"Article 110266"},"PeriodicalIF":7.0000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525006171","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate and secure classifying informal documents related to mental disorders is challenging due to factors such as informal language, noisy data, cultural differences, personal information and mixed emotions. Conventional deep learning models often struggle to capture patterns in informal text, as they miss long-range dependencies, explain words and phrases literally, and have difficulty processing non-standard inputs like emojis. To address these limitations, we expand data dimensionality, transforming and fusing textual data and signs from a 1D to a 2D space. This enables the use of pre-trained 2D CNN models, such as AlexNet, Restnet-50, and VGG-16 removing the need to design and train new models from scratch. We apply this approach to a dataset of social media posts to classify informal documents as either related to suicide or non-suicide content. Our results demonstrate high classification accuracy, exceeding 99%. In addition, our 2D visual data representation conceals individual private information and helps explainability.
期刊介绍:
Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.