{"title":"Nonlinear principal component analysis with random Bernoulli features for process monitoring","authors":"Ke Chen, Dandan Jiang","doi":"10.1016/j.jprocont.2025.103449","DOIUrl":null,"url":null,"abstract":"<div><div>The process generates substantial amounts of data with highly complex structures, leading to the development of numerous nonlinear statistical methods. However, most of these methods rely on computations involving large-scale dense kernel matrices. This dependence poses significant challenges in meeting the high computational demands and real-time responsiveness required by online monitoring systems. To alleviate the computational burden of dense large-scale matrix multiplication, we incorporate the bootstrap sampling concept into random feature mapping and propose a novel random Bernoulli principal component analysis method to efficiently capture nonlinear patterns in the process. We derive a convergence bound for the kernel matrix approximation constructed using random Bernoulli features, ensuring theoretical robustness. Subsequently, we design four fast process monitoring methods based on random Bernoulli principal component analysis to extend its nonlinear capabilities for handling diverse fault scenarios. Finally, numerical experiments and real-world data analyses are conducted to evaluate the performance of the proposed methods. Results demonstrate that the proposed methods offer excellent scalability and reduced computational complexity, achieving substantial cost savings with minimal performance loss compared to traditional kernel-based approaches.</div></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"151 ","pages":"Article 103449"},"PeriodicalIF":3.3000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Process Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152425000770","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The process generates substantial amounts of data with highly complex structures, leading to the development of numerous nonlinear statistical methods. However, most of these methods rely on computations involving large-scale dense kernel matrices. This dependence poses significant challenges in meeting the high computational demands and real-time responsiveness required by online monitoring systems. To alleviate the computational burden of dense large-scale matrix multiplication, we incorporate the bootstrap sampling concept into random feature mapping and propose a novel random Bernoulli principal component analysis method to efficiently capture nonlinear patterns in the process. We derive a convergence bound for the kernel matrix approximation constructed using random Bernoulli features, ensuring theoretical robustness. Subsequently, we design four fast process monitoring methods based on random Bernoulli principal component analysis to extend its nonlinear capabilities for handling diverse fault scenarios. Finally, numerical experiments and real-world data analyses are conducted to evaluate the performance of the proposed methods. Results demonstrate that the proposed methods offer excellent scalability and reduced computational complexity, achieving substantial cost savings with minimal performance loss compared to traditional kernel-based approaches.
期刊介绍:
This international journal covers the application of control theory, operations research, computer science and engineering principles to the solution of process control problems. In addition to the traditional chemical processing and manufacturing applications, the scope of process control problems involves a wide range of applications that includes energy processes, nano-technology, systems biology, bio-medical engineering, pharmaceutical processing technology, energy storage and conversion, smart grid, and data analytics among others.
Papers on the theory in these areas will also be accepted provided the theoretical contribution is aimed at the application and the development of process control techniques.
Topics covered include:
• Control applications• Process monitoring• Plant-wide control• Process control systems• Control techniques and algorithms• Process modelling and simulation• Design methods
Advanced design methods exclude well established and widely studied traditional design techniques such as PID tuning and its many variants. Applications in fields such as control of automotive engines, machinery and robotics are not deemed suitable unless a clear motivation for the relevance to process control is provided.