Synthesis and Characterization of Tethered Polymer for Hybrid Electrolytes in Solid Lithium-Metal Batteries

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Ziba Rahmati, Nan Wu, Coby Collins, Jiaxin Lu, Morgan Stefik* and Kevin Huang*, 
{"title":"Synthesis and Characterization of Tethered Polymer for Hybrid Electrolytes in Solid Lithium-Metal Batteries","authors":"Ziba Rahmati,&nbsp;Nan Wu,&nbsp;Coby Collins,&nbsp;Jiaxin Lu,&nbsp;Morgan Stefik* and Kevin Huang*,&nbsp;","doi":"10.1021/acsaem.5c0020010.1021/acsaem.5c00200","DOIUrl":null,"url":null,"abstract":"<p >This study investigates a hybrid polymer-ceramic composite electrolyte for solid-state batteries. The polymer is synthesized through the copolymerization of poly(ethylene glycol) methacrylate and poly(methacrylic acid) via the reversible addition–fragmentation chain transfer (RAFT) method followed by postsynthetic functionalization to add phosphonic acid groups, yielding poly(PEGMA-<i>ran</i>-DEPMMA) that can covalently bind to oxide surfaces (Tpoly). The ceramic phase is porous gadolinium-doped cerium oxide (GDC) with a graded porosity made by a phase inversion method. Both monomers in Tpoly interact with anions synergistically for Li-ion conduction. In addition, the binding of phosphonic acid with GDC improves the interfacial stability. A Li symmetric cell with this hybrid electrolyte demonstrated stable performance for over 2000 h at 0.1 mA cm<sup>–2</sup> with a critical current density of up to 0.8 mA cm<sup>–2</sup>. The interfacial resistance of this hybrid electrolyte/Li electrode is reduced by 50% as compared to nontethered PPEGMA. The findings highlight the potential of hybrid polymer-ceramic composites in overcoming interfacial challenges of solid-state lithium-metal battery technology.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 9","pages":"5800–5810 5800–5810"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c00200","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates a hybrid polymer-ceramic composite electrolyte for solid-state batteries. The polymer is synthesized through the copolymerization of poly(ethylene glycol) methacrylate and poly(methacrylic acid) via the reversible addition–fragmentation chain transfer (RAFT) method followed by postsynthetic functionalization to add phosphonic acid groups, yielding poly(PEGMA-ran-DEPMMA) that can covalently bind to oxide surfaces (Tpoly). The ceramic phase is porous gadolinium-doped cerium oxide (GDC) with a graded porosity made by a phase inversion method. Both monomers in Tpoly interact with anions synergistically for Li-ion conduction. In addition, the binding of phosphonic acid with GDC improves the interfacial stability. A Li symmetric cell with this hybrid electrolyte demonstrated stable performance for over 2000 h at 0.1 mA cm–2 with a critical current density of up to 0.8 mA cm–2. The interfacial resistance of this hybrid electrolyte/Li electrode is reduced by 50% as compared to nontethered PPEGMA. The findings highlight the potential of hybrid polymer-ceramic composites in overcoming interfacial challenges of solid-state lithium-metal battery technology.

Abstract Image

固体锂金属电池混合电解质系留聚合物的合成与表征
研究了一种用于固态电池的聚合物-陶瓷复合电解质。该聚合物是通过可逆加成-裂解链转移(RAFT)法将聚(乙二醇)甲基丙烯酸酯和聚(甲基丙烯酸)共聚合成的,然后通过合成后的功能化加入磷酸基团,得到聚(PEGMA-ran-DEPMMA),该聚(PEGMA-ran-DEPMMA)可以共价结合到氧化物表面(Tpoly)。该陶瓷相为多孔的掺钆氧化铈(GDC),通过相转化法制备了梯度孔隙度。Tpoly中的两种单体与阴离子协同作用以促进锂离子的传导。此外,磷酸与GDC的结合提高了界面的稳定性。在0.1 mA cm-2条件下,锂对称电池的临界电流密度高达0.8 mA cm-2,电池性能稳定超过2000小时。这种混合电解质/锂电极的界面电阻与非系绳PPEGMA相比降低了50%。这一发现突出了混合聚合物-陶瓷复合材料在克服固态锂金属电池技术的界面挑战方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信