Investigation of the Mechanical Properties of Porous Argyrodite Sulfide Electrolytes for All-Solid-State Batteries

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Siyuan Song, Changmin Shi, Akshay Pakhare, Brian W. Sheldon* and Pradeep R. Guduru*, 
{"title":"Investigation of the Mechanical Properties of Porous Argyrodite Sulfide Electrolytes for All-Solid-State Batteries","authors":"Siyuan Song,&nbsp;Changmin Shi,&nbsp;Akshay Pakhare,&nbsp;Brian W. Sheldon* and Pradeep R. Guduru*,&nbsp;","doi":"10.1021/acsaem.4c0314310.1021/acsaem.4c03143","DOIUrl":null,"url":null,"abstract":"<p >Argyrodite sulfide (Li<sub>6</sub>PS<sub>5</sub>Cl) has been recognized as a promising solid electrolyte material for all-solid-state high-energy-density lithium ion batteries. However, the issue of Li dendrite penetration through Li<sub>6</sub>PS<sub>5</sub>Cl continues to be a challenge that limits its performance and wider applications. To understand dendrite growth that is mediated by fracture, measurement of the relevant mechanical properties, i.e., the elastic modulus and the fracture toughness of Li<sub>6</sub>PS<sub>5</sub>Cl, is necessary to develop quantitative predictive models of dendrite initiation and propagation and help develop strategies to toughen Li<sub>6</sub>PS<sub>5</sub>Cl. Here, an investigation to measure the Young’s modulus and fracture toughness of porous Li<sub>6</sub>PS<sub>5</sub>Cl material is reported; it makes use of a custom-built experimental setup. An analysis of the experimental data in conjunction with finite element simulations shows the Young’s modulus of porous Li<sub>6</sub>PS<sub>5</sub>Cl to be 4.7 ± 1.1 GPa and the fracture toughness to be <i></i><math><mn>0.17</mn><mo>±</mo><mn>0.03</mn><mspace></mspace><mrow><mi>M</mi><mi>P</mi><mi>a</mi></mrow><msqrt><mi>m</mi></msqrt></math>. These results characterize the bulk behavior of the material at a millimeter scale in contrast to the local surface properties at the micrometer scale through nanoindentation. Based on these values, for a pre-existing crack of size 1 μm, the corresponding critical overpotential and critical current density are estimated to be approximately 12 mV and 1 mA/cm<sup>2</sup> respectively. The measurements reported here contribute to the body of knowledge on Li<sub>6</sub>PS<sub>5</sub>Cl toward the larger goal of enhancing the ability to predict Li dendrite initiation and propagation in it.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 9","pages":"5636–5644 5636–5644"},"PeriodicalIF":5.4000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c03143","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Argyrodite sulfide (Li6PS5Cl) has been recognized as a promising solid electrolyte material for all-solid-state high-energy-density lithium ion batteries. However, the issue of Li dendrite penetration through Li6PS5Cl continues to be a challenge that limits its performance and wider applications. To understand dendrite growth that is mediated by fracture, measurement of the relevant mechanical properties, i.e., the elastic modulus and the fracture toughness of Li6PS5Cl, is necessary to develop quantitative predictive models of dendrite initiation and propagation and help develop strategies to toughen Li6PS5Cl. Here, an investigation to measure the Young’s modulus and fracture toughness of porous Li6PS5Cl material is reported; it makes use of a custom-built experimental setup. An analysis of the experimental data in conjunction with finite element simulations shows the Young’s modulus of porous Li6PS5Cl to be 4.7 ± 1.1 GPa and the fracture toughness to be 0.17±0.03MPam. These results characterize the bulk behavior of the material at a millimeter scale in contrast to the local surface properties at the micrometer scale through nanoindentation. Based on these values, for a pre-existing crack of size 1 μm, the corresponding critical overpotential and critical current density are estimated to be approximately 12 mV and 1 mA/cm2 respectively. The measurements reported here contribute to the body of knowledge on Li6PS5Cl toward the larger goal of enhancing the ability to predict Li dendrite initiation and propagation in it.

Abstract Image

全固态电池用多孔银硫化物电解质力学性能研究
银辉石硫化物(Li6PS5Cl)被认为是一种很有前途的全固态高能量密度锂离子电池固体电解质材料。然而,锂枝晶穿透Li6PS5Cl的问题仍然是限制其性能和更广泛应用的挑战。为了了解断裂介导的枝晶生长,有必要测量Li6PS5Cl的相关力学性能,即弹性模量和断裂韧性,以建立枝晶萌生和扩展的定量预测模型,并帮助制定Li6PS5Cl的增韧策略。本文报道了一种测量多孔Li6PS5Cl材料杨氏模量和断裂韧性的方法;它利用了一个定制的实验装置。实验数据分析结合有限元模拟表明,多孔Li6PS5Cl的杨氏模量为4.7±1.1 GPa,断裂韧性为0.17±0.03MPam。这些结果表征了材料在毫米尺度上的整体行为,而不是通过纳米压痕在微米尺度上的局部表面特性。基于这些值,对于尺寸为1 μm的预先存在裂纹,相应的临界过电位和临界电流密度分别约为12 mV和1 mA/cm2。本文报道的测量结果有助于提高Li6PS5Cl的知识体系,以提高预测Li枝晶在其中的形成和繁殖的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信