Solid-State Approach to Bimetallic IrRu/C Catalysts Tuning toward Boosted Oxygen Evolution in Acidic Media

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Ebrahim Sadeghi, Se Yun Kim, Per Morgen, Søren Bredmose Simonsen, Martin A. B. Hedegaard, Raghunandan Sharma* and Shuang Ma Andersen*, 
{"title":"Solid-State Approach to Bimetallic IrRu/C Catalysts Tuning toward Boosted Oxygen Evolution in Acidic Media","authors":"Ebrahim Sadeghi,&nbsp;Se Yun Kim,&nbsp;Per Morgen,&nbsp;Søren Bredmose Simonsen,&nbsp;Martin A. B. Hedegaard,&nbsp;Raghunandan Sharma* and Shuang Ma Andersen*,&nbsp;","doi":"10.1021/acsaem.5c0030710.1021/acsaem.5c00307","DOIUrl":null,"url":null,"abstract":"<p >Metallic iridium (Ir) and ruthenium (Ru) are among the most active OER electrocatalysts in acidic media. Alloying Ir and Ru can enhance catalytic performance while reducing costs. Here, we introduce a scalable solid-state synthesis method to produce nanostructured IrRu semialloy on a high-porosity carbon substrate for efficient OER. This thermal-based approach offers a straightforward and cost-effective alternative to conventional methods and, therefore, eliminates complex procedures, organic solvents, and capping agents while ensuring fine nanoparticle (NP) dispersion. Electrochemical studies show that Ru-rich samples achieve high initial activity, while Ir-rich samples demonstrate superior stability in 0.1 M HClO<sub>4</sub>. Notably, Ir<sub>0.5</sub>Ru<sub>0.5</sub>/C and Ir<sub>0.25</sub>Ru<sub>0.75</sub>/C electrodes achieved mass activities of 1605 and 2494 A g<sub>metal</sub><sup>–1</sup> at 1.65 V (versus RHE)., respectively. Among them, Ir<sub>0.5</sub>Ru<sub>0.5</sub>/C retained 70% of its initial OER performance, outperforming commercial IrO<sub>2</sub> (53%) and other as-prepared catalysts in terms of stability. HAADF-STEM analysis revealed that Ir<sub>0.5</sub>Ru<sub>0.5</sub>/C has the finest particle size distribution, with the highest fraction of sub-2 nm NPs. Theoretical calculations confirmed that *–OOH formation is the rate-determining step (RDS) for both catalysts of interest. The highest reaction energy for Ir<sub>0.25</sub>Ru<sub>0.75</sub>/C is 3.94 eV, whereas, for Ir<sub>0.5</sub>Ru<sub>0.5</sub>/C, it is 4.46 eV. This study demonstrates that solid-state synthesis enables the controlled design of highly active and stable IrRu catalysts and offers a promising approach for scalable OER catalyst production.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 9","pages":"5897–5910 5897–5910"},"PeriodicalIF":5.4000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c00307","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Metallic iridium (Ir) and ruthenium (Ru) are among the most active OER electrocatalysts in acidic media. Alloying Ir and Ru can enhance catalytic performance while reducing costs. Here, we introduce a scalable solid-state synthesis method to produce nanostructured IrRu semialloy on a high-porosity carbon substrate for efficient OER. This thermal-based approach offers a straightforward and cost-effective alternative to conventional methods and, therefore, eliminates complex procedures, organic solvents, and capping agents while ensuring fine nanoparticle (NP) dispersion. Electrochemical studies show that Ru-rich samples achieve high initial activity, while Ir-rich samples demonstrate superior stability in 0.1 M HClO4. Notably, Ir0.5Ru0.5/C and Ir0.25Ru0.75/C electrodes achieved mass activities of 1605 and 2494 A gmetal–1 at 1.65 V (versus RHE)., respectively. Among them, Ir0.5Ru0.5/C retained 70% of its initial OER performance, outperforming commercial IrO2 (53%) and other as-prepared catalysts in terms of stability. HAADF-STEM analysis revealed that Ir0.5Ru0.5/C has the finest particle size distribution, with the highest fraction of sub-2 nm NPs. Theoretical calculations confirmed that *–OOH formation is the rate-determining step (RDS) for both catalysts of interest. The highest reaction energy for Ir0.25Ru0.75/C is 3.94 eV, whereas, for Ir0.5Ru0.5/C, it is 4.46 eV. This study demonstrates that solid-state synthesis enables the controlled design of highly active and stable IrRu catalysts and offers a promising approach for scalable OER catalyst production.

Abstract Image

双金属IrRu/C催化剂在酸性介质中加速析氧的固态研究
金属铱(Ir)和钌(Ru)是酸性介质中最活跃的OER电催化剂。将Ir和Ru合金化可以提高催化性能,同时降低成本。在这里,我们介绍了一种可扩展的固态合成方法,在高孔隙率的碳衬底上生产纳米结构的IrRu半合金,以实现高效的OER。这种基于热的方法为传统方法提供了一种简单、经济的替代方法,因此,在确保纳米颗粒(NP)分散的同时,消除了复杂的程序、有机溶剂和封盖剂。电化学研究表明,富ru样品具有较高的初始活性,而富ir样品在0.1 M HClO4中具有优异的稳定性。值得注意的是,Ir0.5Ru0.5/C和Ir0.25Ru0.75/C电极在1.65 V下的质量活度分别为1605和2494 A g - metal - 1(相对于RHE)。,分别。其中,Ir0.5Ru0.5/C保留了初始OER性能的70%,在稳定性方面优于商用IrO2(53%)和其他制备的催化剂。HAADF-STEM分析表明,Ir0.5Ru0.5/C的粒径分布最细,亚2 nm NPs的比例最高。理论计算证实,* -OOH形成是两种催化剂的速率决定步骤(RDS)。Ir0.25Ru0.75/C的最高反应能为3.94 eV,而Ir0.5Ru0.5/C的最高反应能为4.46 eV。该研究表明,固态合成可以控制设计高活性和稳定的IrRu催化剂,并为可扩展的OER催化剂生产提供了一种有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信