Plant-Derived Phytochemicals for the Synthesis of p–n Junction CuO/CdS Heterostructures for Photocatalytic Carbon Dioxide Reduction to Ethanol and Carbon Monoxide

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Pramod Madhukar Gawal,  and , Animes Kumar Golder*, 
{"title":"Plant-Derived Phytochemicals for the Synthesis of p–n Junction CuO/CdS Heterostructures for Photocatalytic Carbon Dioxide Reduction to Ethanol and Carbon Monoxide","authors":"Pramod Madhukar Gawal,&nbsp; and ,&nbsp;Animes Kumar Golder*,&nbsp;","doi":"10.1021/acsaem.5c0049710.1021/acsaem.5c00497","DOIUrl":null,"url":null,"abstract":"<p >Photocatalytic reduction of CO<sub>2</sub> to value-added fuels is a promising strategy to mitigate the energy crisis and reduce greenhouse gas emissions. Herein, a bio-based zero-dimensional (0D) p–n heterojunction CuO/CdS photocatalyst (7.2 nm, 136.65 m<sup>2</sup>/g) with a conduction band of −1.12 V was synthesized using bio-analytes from <i>Aegle marmelos</i> via microwave irradiation. The p–n heterojunction enhanced the CO<sub>2</sub> adsorption capacity (0.643 mmol/g) and photocurrent response (0.94 μA/cm<sup>2</sup>) compared to CdS QDs(bio) and CuO QDs(bio). Additionally, it improved charge carrier dynamics by reducing PL intensities by 73 and 67% and increasing decay times by 74 and 54.6%, respectively. The internal electric field generated by the Fermi level difference between n-type CdS (−4.21 V) and p-type CuO (−4.7 V) enhanced charge separation and transport, suppressed recombination, and prevented photocorrosion (SO<sub>4</sub><sup>2–</sup>) of CdS QDs(bio). Density functional theory (DFT) analysis revealed alterations in the density of states (DOS) of CdS within the band gap region due to the incorporation of CuO, further facilitating efficient charge separation and transport at the local junctions. The optimal 0.50CuO/CdS QDs(bio) heterostructure exhibited remarkable photocatalytic performance for CO<sub>2</sub> reduction, achieving an ethanol (EtOH) and carbon monoxide (CO) production rate of 158.48/182.68 μmol/g/h (AQY 8.24/1.58%) while maintaining its structural and morphological stability. This work highlights the potential of bio-based p–n junction photocatalysts for efficient CO<sub>2</sub> reduction into value-added chemicals.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 9","pages":"6087–6099 6087–6099"},"PeriodicalIF":5.4000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c00497","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Photocatalytic reduction of CO2 to value-added fuels is a promising strategy to mitigate the energy crisis and reduce greenhouse gas emissions. Herein, a bio-based zero-dimensional (0D) p–n heterojunction CuO/CdS photocatalyst (7.2 nm, 136.65 m2/g) with a conduction band of −1.12 V was synthesized using bio-analytes from Aegle marmelos via microwave irradiation. The p–n heterojunction enhanced the CO2 adsorption capacity (0.643 mmol/g) and photocurrent response (0.94 μA/cm2) compared to CdS QDs(bio) and CuO QDs(bio). Additionally, it improved charge carrier dynamics by reducing PL intensities by 73 and 67% and increasing decay times by 74 and 54.6%, respectively. The internal electric field generated by the Fermi level difference between n-type CdS (−4.21 V) and p-type CuO (−4.7 V) enhanced charge separation and transport, suppressed recombination, and prevented photocorrosion (SO42–) of CdS QDs(bio). Density functional theory (DFT) analysis revealed alterations in the density of states (DOS) of CdS within the band gap region due to the incorporation of CuO, further facilitating efficient charge separation and transport at the local junctions. The optimal 0.50CuO/CdS QDs(bio) heterostructure exhibited remarkable photocatalytic performance for CO2 reduction, achieving an ethanol (EtOH) and carbon monoxide (CO) production rate of 158.48/182.68 μmol/g/h (AQY 8.24/1.58%) while maintaining its structural and morphological stability. This work highlights the potential of bio-based p–n junction photocatalysts for efficient CO2 reduction into value-added chemicals.

Abstract Image

用于光催化二氧化碳还原为乙醇和一氧化碳的p-n结CuO/CdS异质结构合成的植物源植物化学物质
光催化将二氧化碳还原为增值燃料是缓解能源危机和减少温室气体排放的一种有前途的策略。采用微波辐照法制备了一种生物基零维(0D) p-n异质结CuO/CdS光催化剂(7.2 nm, 136.65 m2/g),导带为- 1.12 V。与CdS量子点(生物)和CuO量子点(生物)相比,p-n异质结提高了CO2吸附能力(0.643 mmol/g)和光电流响应(0.94 μA/cm2)。此外,它还通过将PL强度分别降低73%和67%,将衰减时间分别增加74%和54.6%来改善载流子动力学。n型CdS(−4.21 V)和p型CuO(−4.7 V)之间费米能级差产生的内电场增强了电荷分离和输运,抑制了复合,防止了CdS量子点(生物)的光腐蚀(SO42 -)。密度泛函理论(DFT)分析表明,由于CuO的加入,带隙区域内CdS的态密度(DOS)发生了变化,进一步促进了局部结处有效的电荷分离和输运。最佳的0.50CuO/CdS量子点(生物)异质结构具有良好的光催化CO2还原性能,在保持结构和形态稳定性的同时,乙醇(EtOH)和一氧化碳(CO)的产率为158.48/182.68 μmol/g/h (AQY 8.24/1.58%)。这项工作强调了生物基p-n结光催化剂在有效地将二氧化碳还原成增值化学品方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信