{"title":"Learning Quantum Processes with Quantum Statistical Queries","authors":"Chirag Wadhwa, Mina Doosti","doi":"10.22331/q-2025-05-12-1739","DOIUrl":null,"url":null,"abstract":"In this work, we initiate the study of learning quantum processes from quantum statistical queries. We focus on two fundamental learning tasks in this new access model: shadow tomography of quantum processes and process tomography with respect to diamond distance. For the former, we present an efficient average-case algorithm along with a nearly matching lower bound with respect to the number of observables to be predicted. For the latter, we present average-case query complexity lower bounds for learning classes of unitaries. We obtain an exponential lower bound for learning unitary 2-designs and a doubly exponential lower bound for Haar-random unitaries. Finally, we demonstrate the practical relevance of our access model by applying our learning algorithm to attack an authentication protocol using Classical-Readout Quantum Physically Unclonable Functions, partially addressing an important open question in quantum hardware security.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"38 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-05-12-1739","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we initiate the study of learning quantum processes from quantum statistical queries. We focus on two fundamental learning tasks in this new access model: shadow tomography of quantum processes and process tomography with respect to diamond distance. For the former, we present an efficient average-case algorithm along with a nearly matching lower bound with respect to the number of observables to be predicted. For the latter, we present average-case query complexity lower bounds for learning classes of unitaries. We obtain an exponential lower bound for learning unitary 2-designs and a doubly exponential lower bound for Haar-random unitaries. Finally, we demonstrate the practical relevance of our access model by applying our learning algorithm to attack an authentication protocol using Classical-Readout Quantum Physically Unclonable Functions, partially addressing an important open question in quantum hardware security.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.