Nathan C Frey, Samir Sarkar, Diane Amanda Dickie, Andrew Molino, Robert J Gilliard
{"title":"Borinine-FLP Ring Expansion: Isolation of Eight-Membered B–P Rings Bridged by µ2 Chalcogenide and Chloronium Ions","authors":"Nathan C Frey, Samir Sarkar, Diane Amanda Dickie, Andrew Molino, Robert J Gilliard","doi":"10.1039/d5sc02000j","DOIUrl":null,"url":null,"abstract":"Boron–phosphorus (B–P) frustrated Lewis pairs (FLPs) are an important class of compounds for activating various small molecules. Utilizing the ring expansion reactivity of 9-chloro-9-borafluorene, a borinine-based FLP was synthesized. Various main-group cyclopentene derivatives were obtained via the reaction of the FLP with Me3NO, S8, and Se. Subsequent reduction of these species yielded the ring-expanded compounds, each featuring bridging B–E–B (E = O, S, Se) bonds. Similarly, the halide abstraction from the FLP with AgNTf2 led to the formation of a cationic ring-expanded compound with a bridging B–Cl–B motif. This motif constitutes one of the first examples of a boron-stabilized chloronium ion, as verified using in-depth bonding analysis methods. Mechanistic pathways for the reduction- and halide abstraction-mediated ring expansion reactions are proposed with the aid of density functional theory. Electronic structure computations were performed to determine the best representation of bonding interactions in each compound, suggesting phosophorus(V)–chalcogen double bonding and chalcogen–boron(III) dative interactions in the main-group element cyclopentene derivatives.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"230 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sc02000j","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Boron–phosphorus (B–P) frustrated Lewis pairs (FLPs) are an important class of compounds for activating various small molecules. Utilizing the ring expansion reactivity of 9-chloro-9-borafluorene, a borinine-based FLP was synthesized. Various main-group cyclopentene derivatives were obtained via the reaction of the FLP with Me3NO, S8, and Se. Subsequent reduction of these species yielded the ring-expanded compounds, each featuring bridging B–E–B (E = O, S, Se) bonds. Similarly, the halide abstraction from the FLP with AgNTf2 led to the formation of a cationic ring-expanded compound with a bridging B–Cl–B motif. This motif constitutes one of the first examples of a boron-stabilized chloronium ion, as verified using in-depth bonding analysis methods. Mechanistic pathways for the reduction- and halide abstraction-mediated ring expansion reactions are proposed with the aid of density functional theory. Electronic structure computations were performed to determine the best representation of bonding interactions in each compound, suggesting phosophorus(V)–chalcogen double bonding and chalcogen–boron(III) dative interactions in the main-group element cyclopentene derivatives.
期刊介绍:
Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.