Phosphorylation of SNX17 impedes activation of Retriever-mediated sorting.

IF 4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jan Dominik Speidel,Kaikai Yu,Ralph Thomas Böttcher
{"title":"Phosphorylation of SNX17 impedes activation of Retriever-mediated sorting.","authors":"Jan Dominik Speidel,Kaikai Yu,Ralph Thomas Böttcher","doi":"10.1016/j.jbc.2025.110222","DOIUrl":null,"url":null,"abstract":"Sorting nexin 17 (SNX17) functions as cargo receptor on endosomal membranes that enables the recycling of numerous membrane cargo proteins by binding to the Retriever complex. Yet, little is known how SNX17 activity or its membrane recruitment is regulated. Here, we report that phosphorylation of SNX17 at serine 38 (Ser38) within the phox (PX) domain serves as a critical regulatory switch governing its endosomal localization and function. A mutant form mimicking the phosphorylated state disrupts SNX17's ability to bind phosphatidylinositol-3-phosphate (PI3P), which in turn impairs its association with early endosomal membranes and inactivates SNX17-dependent cargo-recycling in cells. Furthermore, our results demonstrate that Ser38 is part of an autoinhibitory mechanism to regulate SNX17 cargo binding. Collectively, these findings provide new insights into the dynamic regulation of SNX17 activity and Retriever-mediated sorting processes. It also highlights SNX17 Ser38 phosphorylation as a critical regulatory mechanism that controls SNX17's endosomal localization and cargo recycling function.","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":"68 1","pages":"110222"},"PeriodicalIF":4.0000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.110222","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sorting nexin 17 (SNX17) functions as cargo receptor on endosomal membranes that enables the recycling of numerous membrane cargo proteins by binding to the Retriever complex. Yet, little is known how SNX17 activity or its membrane recruitment is regulated. Here, we report that phosphorylation of SNX17 at serine 38 (Ser38) within the phox (PX) domain serves as a critical regulatory switch governing its endosomal localization and function. A mutant form mimicking the phosphorylated state disrupts SNX17's ability to bind phosphatidylinositol-3-phosphate (PI3P), which in turn impairs its association with early endosomal membranes and inactivates SNX17-dependent cargo-recycling in cells. Furthermore, our results demonstrate that Ser38 is part of an autoinhibitory mechanism to regulate SNX17 cargo binding. Collectively, these findings provide new insights into the dynamic regulation of SNX17 activity and Retriever-mediated sorting processes. It also highlights SNX17 Ser38 phosphorylation as a critical regulatory mechanism that controls SNX17's endosomal localization and cargo recycling function.
SNX17的磷酸化阻碍了寻回器介导的分选的激活。
分类连接蛋白17 (SNX17)作为内体膜上的货物受体,通过与retriver复合物结合,实现许多膜货物蛋白的再循环。然而,SNX17的活性或其膜募集是如何调控的,我们知之甚少。在这里,我们报道了phox (PX)结构域内SNX17在38号丝氨酸(Ser38)上的磷酸化是控制其内体定位和功能的关键调控开关。一种模仿磷酸化状态的突变形式破坏了SNX17结合磷脂酰肌醇-3-磷酸(PI3P)的能力,进而损害了其与早期内体膜的关联,并使细胞中依赖SNX17的货物再循环失活。此外,我们的研究结果表明,Ser38是调节SNX17货物结合的自抑制机制的一部分。总的来说,这些发现为SNX17活性的动态调控和寻回器介导的分选过程提供了新的见解。它还强调SNX17 Ser38磷酸化是控制SNX17内体定位和货物回收功能的关键调控机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biological Chemistry
Journal of Biological Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
4.20%
发文量
1233
期刊介绍: The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信