Xiao Han,Xin Cao,Qianqian Ju,Chengxin Ge,Yongqi Lin,Jinhong Shi,Xinhua Zhang,Cheng Sun,Haoming Li
{"title":"Microglial TAK1 promotes neurotoxic astrocytes and cognitive impairment in LPS-induced hippocampal neuroinflammation.","authors":"Xiao Han,Xin Cao,Qianqian Ju,Chengxin Ge,Yongqi Lin,Jinhong Shi,Xinhua Zhang,Cheng Sun,Haoming Li","doi":"10.1016/j.jbc.2025.110225","DOIUrl":null,"url":null,"abstract":"The peripheral immune system has a strong effect on the central nervous system (CNS). Systemic lipopolysaccharides (LPS) administration triggers robust microglial activation and induces significant inflammatory responses in the hippocampus. This study investigates the role of Transforming Growth Factor-β-Activated Kinase 1 (TAK1) in mediating LPS-induced hippocampal neuroinflammation and cognitive impairment. Our findings reveal that LPS induces activation of microglial TAK1, which in turn actives downstream effector NF-κB/p65 to release pro-inflammatory cytokines. The activated microglia also promote astrocytes to polarize into a neurotoxic phenotype (A1-like phenotype), and cause the loss of newborn neurons in the hippocampal dentate gyrus (DG). However, TAK1 reduction inhibits microglial responses, limits neurotoxic astrocytes, rescues newborn neurons, and subsequently improves LPS-induced cognitive deficits, suggesting that targeting TAK1 may be an effective strategy for alleviating neuroinflammation. The interaction between TAK1 activation, microglial responses, and the transition of neurotoxic astrocytes enhances our understanding of the cellular dynamics driving LPS-induced neuroinflammation, suggesting that TAK1 may be a therapeutic target for treating cognitive impairment.","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":"37 1","pages":"110225"},"PeriodicalIF":4.0000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.110225","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The peripheral immune system has a strong effect on the central nervous system (CNS). Systemic lipopolysaccharides (LPS) administration triggers robust microglial activation and induces significant inflammatory responses in the hippocampus. This study investigates the role of Transforming Growth Factor-β-Activated Kinase 1 (TAK1) in mediating LPS-induced hippocampal neuroinflammation and cognitive impairment. Our findings reveal that LPS induces activation of microglial TAK1, which in turn actives downstream effector NF-κB/p65 to release pro-inflammatory cytokines. The activated microglia also promote astrocytes to polarize into a neurotoxic phenotype (A1-like phenotype), and cause the loss of newborn neurons in the hippocampal dentate gyrus (DG). However, TAK1 reduction inhibits microglial responses, limits neurotoxic astrocytes, rescues newborn neurons, and subsequently improves LPS-induced cognitive deficits, suggesting that targeting TAK1 may be an effective strategy for alleviating neuroinflammation. The interaction between TAK1 activation, microglial responses, and the transition of neurotoxic astrocytes enhances our understanding of the cellular dynamics driving LPS-induced neuroinflammation, suggesting that TAK1 may be a therapeutic target for treating cognitive impairment.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.