{"title":"The role of human Shu complex in ATP-dependent regulation of RAD51 filaments during homologous recombination-associated DNA damage response.","authors":"Sam S H Chu,Guangxin Xing,Hong Ling","doi":"10.1016/j.jbc.2025.110212","DOIUrl":null,"url":null,"abstract":"Error-free DNA lesion bypass is an important pathway in DNA damage tolerance. The Shu complex facilitates this process by promoting homologous recombination (HR) to bypass DNA damage. Biochemical analysis of the human Shu complex homolog, hSWS1-SWSAP1, offers valuable insights into the HR-associated DNA damage response. Here, we biochemically characterized the human Shu complex and examined its interactions with RAD51 filaments, which are essential in HR. Using fluorescence polarization assays, we first revealed that hSWS1-SWSAP1 preferentially binds DNA with an exposed 5' end in the presence of adenine nucleotides. We then investigated and validated the DNA-stimulated ATPase activity of hSWS1-SWSAP1 through site-specific mutagenesis, revealing that DNA with an exposed 5' end is the most efficient in enhancing this activity. Furthermore, we showed that hSWS1-SWSAP1 initially interacts with RAD51 filaments at the 5' end and modulates the properties of the nucleoprotein filaments using fluorescence-based assays. Our findings revealed that hSWS1-SWSAP1 induces conformational changes in RAD51 filaments in an ATP-hydrolysis-dependent manner, while its stabilization of the filaments depends on ATP binding. This work provides mechanistic insights into the regulation of RAD51 filaments in HR-associated DNA damage tolerance.","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":"50 1","pages":"110212"},"PeriodicalIF":4.0000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.110212","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Error-free DNA lesion bypass is an important pathway in DNA damage tolerance. The Shu complex facilitates this process by promoting homologous recombination (HR) to bypass DNA damage. Biochemical analysis of the human Shu complex homolog, hSWS1-SWSAP1, offers valuable insights into the HR-associated DNA damage response. Here, we biochemically characterized the human Shu complex and examined its interactions with RAD51 filaments, which are essential in HR. Using fluorescence polarization assays, we first revealed that hSWS1-SWSAP1 preferentially binds DNA with an exposed 5' end in the presence of adenine nucleotides. We then investigated and validated the DNA-stimulated ATPase activity of hSWS1-SWSAP1 through site-specific mutagenesis, revealing that DNA with an exposed 5' end is the most efficient in enhancing this activity. Furthermore, we showed that hSWS1-SWSAP1 initially interacts with RAD51 filaments at the 5' end and modulates the properties of the nucleoprotein filaments using fluorescence-based assays. Our findings revealed that hSWS1-SWSAP1 induces conformational changes in RAD51 filaments in an ATP-hydrolysis-dependent manner, while its stabilization of the filaments depends on ATP binding. This work provides mechanistic insights into the regulation of RAD51 filaments in HR-associated DNA damage tolerance.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.