{"title":"Exploring the regulatory mechanism of CCNA2 in colorectal cancer: insights from multiomics and experimental analysis.","authors":"Xinyi Lei,Lanying Qiu,Qiang Chen,Lan Liao,Pengfei Yu,Wenjie Wu,Zhengyang Zhu,Chunying Li,Gang Lin,Zirui Zhuang,Yuxin Meng,Yan Wang,Cunchuan Wang,Yian Du","doi":"10.1016/j.jbc.2025.110216","DOIUrl":null,"url":null,"abstract":"Colorectal cancer (CRC) is the third-most common cancer and the second-leading cause of mortality due to cancer worldwide. The underlying regulatory mechanism of CCNA2 in CRC was explored through multiomics and experimental analyses, thus facilitating diagnosis, therapy and prognosis. Two gene expression datasets (i.e., GSE9348 and GSE110223) were extracted from GEO. Differentially expressed genes (DEGs) were identified via GEO2R, which were used for enrichment analyses through DAVID. PPI network of DEGs was constructed by STRING, and the core genes were identified. CCNA2, a prognostic core gene for CRC, was validated in TCGA and HPA via transcriptomics and proteomics. ROC analysis was performed to evaluate the diagnostic value of CCNA2 in CRC. The therapeutic value of CCNA2 was evaluated in DGIdb through pharmacogenomics. The correlation between CCNA2 and immune infiltration was determined in TIMER by immunomics. TF-mRNA and miRNA-mRNA networks for CCNA2 were constructed in miRnet and miRDB via transcriptomics. The role and mechanism of CCNA2 in CRC were investigated both in vitro and in vivo. The miR-548x-3p/CCNA2 regulatory axis in CRC was investigated in vitro. CCNA2 showed excellent diagnostic, therapeutic, and prognostic value in CRC. CCNA2 was closely associated with tumor-infiltrating immunocytes, TFs, and miRNAs. The upregulation of CCNA2 was observed in CRC, and the knockdown of CCNA2 inhibited the proliferation, migration, and invasion while inducing apoptosis of CRC cells. The knockdown of CCNA2 could inhibit epithelial-mesenchymal transition (EMT) pathway. CCNA2 acted as a target of miR-548x-3p in regulating the biological behavior of CRC cells via the EMT-signaling pathway. CCNA2 is a potential biomarker for the diagnosis, treatment, and prognosis of CRC and is associated with immune infiltration, TF, and miRNA. The miR-548x-3p/CCNA2 axis plays a pivotal role in regulating the tumorigenesis of CRC through the EMT-signaling pathway.","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":"33 1","pages":"110216"},"PeriodicalIF":4.0000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.110216","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Colorectal cancer (CRC) is the third-most common cancer and the second-leading cause of mortality due to cancer worldwide. The underlying regulatory mechanism of CCNA2 in CRC was explored through multiomics and experimental analyses, thus facilitating diagnosis, therapy and prognosis. Two gene expression datasets (i.e., GSE9348 and GSE110223) were extracted from GEO. Differentially expressed genes (DEGs) were identified via GEO2R, which were used for enrichment analyses through DAVID. PPI network of DEGs was constructed by STRING, and the core genes were identified. CCNA2, a prognostic core gene for CRC, was validated in TCGA and HPA via transcriptomics and proteomics. ROC analysis was performed to evaluate the diagnostic value of CCNA2 in CRC. The therapeutic value of CCNA2 was evaluated in DGIdb through pharmacogenomics. The correlation between CCNA2 and immune infiltration was determined in TIMER by immunomics. TF-mRNA and miRNA-mRNA networks for CCNA2 were constructed in miRnet and miRDB via transcriptomics. The role and mechanism of CCNA2 in CRC were investigated both in vitro and in vivo. The miR-548x-3p/CCNA2 regulatory axis in CRC was investigated in vitro. CCNA2 showed excellent diagnostic, therapeutic, and prognostic value in CRC. CCNA2 was closely associated with tumor-infiltrating immunocytes, TFs, and miRNAs. The upregulation of CCNA2 was observed in CRC, and the knockdown of CCNA2 inhibited the proliferation, migration, and invasion while inducing apoptosis of CRC cells. The knockdown of CCNA2 could inhibit epithelial-mesenchymal transition (EMT) pathway. CCNA2 acted as a target of miR-548x-3p in regulating the biological behavior of CRC cells via the EMT-signaling pathway. CCNA2 is a potential biomarker for the diagnosis, treatment, and prognosis of CRC and is associated with immune infiltration, TF, and miRNA. The miR-548x-3p/CCNA2 axis plays a pivotal role in regulating the tumorigenesis of CRC through the EMT-signaling pathway.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.