{"title":"On the fatigue design strength of steel butt welded joints: Size and geometrical effects","authors":"Paolo Livieri, Roberto Tovo","doi":"10.1016/j.ijfatigue.2025.109037","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses the issue of the influence of geometry and size on the fatigue strength of steel butt weld joints. It aims to develop a series of continuously defined influencing factors, similar to the stress concentration factors in conventional un-welded notches. Such coefficients are mainly based on theoretical outcomes from Fracture Mechanics and Notch Mechanics and, where necessary, they are defined by the extensive use of parametrical numerical investigations. The relationship between stress raising factors and strength assessment reduction is explored by using local stress approaches as well as Notch Stress Intensity Factors and local effective stress.</div><div>The main result is a clear definition of the size effect related to the dimensions and opening angle. Further secondary factors are investigated: bead shape, thickness over bead dimension ratio and toe radius.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"199 ","pages":"Article 109037"},"PeriodicalIF":5.7000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112325002348","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper addresses the issue of the influence of geometry and size on the fatigue strength of steel butt weld joints. It aims to develop a series of continuously defined influencing factors, similar to the stress concentration factors in conventional un-welded notches. Such coefficients are mainly based on theoretical outcomes from Fracture Mechanics and Notch Mechanics and, where necessary, they are defined by the extensive use of parametrical numerical investigations. The relationship between stress raising factors and strength assessment reduction is explored by using local stress approaches as well as Notch Stress Intensity Factors and local effective stress.
The main result is a clear definition of the size effect related to the dimensions and opening angle. Further secondary factors are investigated: bead shape, thickness over bead dimension ratio and toe radius.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.