Tim R. Orr , William M. Coombs , Erika Rader , Jessica Larsen
{"title":"Does the Lost Jim lava flow (Alaska) really preserve evidence of interaction with permafrost?","authors":"Tim R. Orr , William M. Coombs , Erika Rader , Jessica Larsen","doi":"10.1016/j.jvolgeores.2025.108347","DOIUrl":null,"url":null,"abstract":"<div><div>The basaltic Lost Jim lava flow, the youngest member of the Imuruk Lake volcanic field, Alaska, is reported to have interacted with underlying permafrost by thawing it and forming cavities into which the lava flow collapsed, forming pits and other depressions on the lava flow's surface. Our field observations contradict this hypothesis. The Lost Jim lava flow exhibits surface features typical of an inflated pāhoehoe flow, and we propose instead that most of the pits are unambiguously the result of flow inflation (i.e., lava-rise pits). These pits are found on elevated, relatively level surfaces, and their inner walls preserve features like rotated surface slabs and fine-scale flow banding on exposed crack surfaces, both of which are hallmarks of lava flow inflation. While collapse pits do exist on the Lost Jim lava flow, they are morphologically distinct and formed by crustal failure into drained lava tubes.</div><div>Satellite images of the Lost Jim lava flow show similarities in the size and distribution of pits within other young pāhoehoe lava flows scattered across the globe. The small diameter of many of the pits (<10 m), compared to flow thickness (≥10 m), also argues against collapse—numerical modeling shows that the relatively high tensile strength of a coherent lava flow would have prevented its collapse into cavities similar in diameter to the lava flow's thickness. Finally, the pits are found scattered across the Lost Jim lava flow, including in locations where the lava flow rests directly on bedrock, which consists of older lava flows. Segregated ice lenses and soil expansion—necessary components for thermokarst formation when thawed—do not exist in such locations. Altogether, these factors show that the Lost Jim lava flow is an inflated lava flow, and permafrost played no significant role during or after its emplacement.</div></div>","PeriodicalId":54753,"journal":{"name":"Journal of Volcanology and Geothermal Research","volume":"464 ","pages":"Article 108347"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Volcanology and Geothermal Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377027325000836","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The basaltic Lost Jim lava flow, the youngest member of the Imuruk Lake volcanic field, Alaska, is reported to have interacted with underlying permafrost by thawing it and forming cavities into which the lava flow collapsed, forming pits and other depressions on the lava flow's surface. Our field observations contradict this hypothesis. The Lost Jim lava flow exhibits surface features typical of an inflated pāhoehoe flow, and we propose instead that most of the pits are unambiguously the result of flow inflation (i.e., lava-rise pits). These pits are found on elevated, relatively level surfaces, and their inner walls preserve features like rotated surface slabs and fine-scale flow banding on exposed crack surfaces, both of which are hallmarks of lava flow inflation. While collapse pits do exist on the Lost Jim lava flow, they are morphologically distinct and formed by crustal failure into drained lava tubes.
Satellite images of the Lost Jim lava flow show similarities in the size and distribution of pits within other young pāhoehoe lava flows scattered across the globe. The small diameter of many of the pits (<10 m), compared to flow thickness (≥10 m), also argues against collapse—numerical modeling shows that the relatively high tensile strength of a coherent lava flow would have prevented its collapse into cavities similar in diameter to the lava flow's thickness. Finally, the pits are found scattered across the Lost Jim lava flow, including in locations where the lava flow rests directly on bedrock, which consists of older lava flows. Segregated ice lenses and soil expansion—necessary components for thermokarst formation when thawed—do not exist in such locations. Altogether, these factors show that the Lost Jim lava flow is an inflated lava flow, and permafrost played no significant role during or after its emplacement.
期刊介绍:
An international research journal with focus on volcanic and geothermal processes and their impact on the environment and society.
Submission of papers covering the following aspects of volcanology and geothermal research are encouraged:
(1) Geological aspects of volcanic systems: volcano stratigraphy, structure and tectonic influence; eruptive history; evolution of volcanic landforms; eruption style and progress; dispersal patterns of lava and ash; analysis of real-time eruption observations.
(2) Geochemical and petrological aspects of volcanic rocks: magma genesis and evolution; crystallization; volatile compositions, solubility, and degassing; volcanic petrography and textural analysis.
(3) Hydrology, geochemistry and measurement of volcanic and hydrothermal fluids: volcanic gas emissions; fumaroles and springs; crater lakes; hydrothermal mineralization.
(4) Geophysical aspects of volcanic systems: physical properties of volcanic rocks and magmas; heat flow studies; volcano seismology, geodesy and remote sensing.
(5) Computational modeling and experimental simulation of magmatic and hydrothermal processes: eruption dynamics; magma transport and storage; plume dynamics and ash dispersal; lava flow dynamics; hydrothermal fluid flow; thermodynamics of aqueous fluids and melts.
(6) Volcano hazard and risk research: hazard zonation methodology, development of forecasting tools; assessment techniques for vulnerability and impact.