Complying with the EU AI Act: Innovations in explainable and user-centric hand gesture recognition

IF 4.9
Sarah Seifi , Tobias Sukianto , Cecilia Carbonelli , Lorenzo Servadei , Robert Wille
{"title":"Complying with the EU AI Act: Innovations in explainable and user-centric hand gesture recognition","authors":"Sarah Seifi ,&nbsp;Tobias Sukianto ,&nbsp;Cecilia Carbonelli ,&nbsp;Lorenzo Servadei ,&nbsp;Robert Wille","doi":"10.1016/j.mlwa.2025.100655","DOIUrl":null,"url":null,"abstract":"<div><div>The EU AI Act underscores the importance of transparency, user-centricity, and robustness in AI systems, particularly for high-risk applications. In response, we present advancements in XentricAI, an explainable hand gesture recognition (HGR) system designed to meet these regulatory requirements. XentricAI addresses fundamental challenges in HGR, such as the opacity of black-box models using explainable AI methods and the handling of distributional shifts in real-world data through transfer learning techniques.</div><div>We extend an existing radar-based HGR dataset by adding 28,000 new gestures, with contributions from multiple users across varied locations, including 24,000 out-of-distribution gestures. Leveraging this real-world dataset, we enhance XentricAI’s capabilities by integrating a variational autoencoder module for improved gesture anomaly detection, incorporating user-specific dynamic thresholding. This integration enables the identification of 11.50% more anomalous gestures.</div><div>Our extensive evaluations demonstrate a 97.5% success rate in characterizing these anomalies, significantly improving system explainability. Furthermore, the implementation of transfer learning techniques has shown a substantial increase in user adaptability, with an average performance improvement of at least 15.17%.</div><div>This work contributes to the development of trustworthy AI systems by providing both technical advancements and regulatory compliance, offering a commercially viable solution that aligns with the EU AI Act requirements.</div></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"20 ","pages":"Article 100655"},"PeriodicalIF":4.9000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827025000386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The EU AI Act underscores the importance of transparency, user-centricity, and robustness in AI systems, particularly for high-risk applications. In response, we present advancements in XentricAI, an explainable hand gesture recognition (HGR) system designed to meet these regulatory requirements. XentricAI addresses fundamental challenges in HGR, such as the opacity of black-box models using explainable AI methods and the handling of distributional shifts in real-world data through transfer learning techniques.
We extend an existing radar-based HGR dataset by adding 28,000 new gestures, with contributions from multiple users across varied locations, including 24,000 out-of-distribution gestures. Leveraging this real-world dataset, we enhance XentricAI’s capabilities by integrating a variational autoencoder module for improved gesture anomaly detection, incorporating user-specific dynamic thresholding. This integration enables the identification of 11.50% more anomalous gestures.
Our extensive evaluations demonstrate a 97.5% success rate in characterizing these anomalies, significantly improving system explainability. Furthermore, the implementation of transfer learning techniques has shown a substantial increase in user adaptability, with an average performance improvement of at least 15.17%.
This work contributes to the development of trustworthy AI systems by providing both technical advancements and regulatory compliance, offering a commercially viable solution that aligns with the EU AI Act requirements.
遵守欧盟人工智能法案:在可解释和以用户为中心的手势识别方面的创新
欧盟人工智能法案强调了人工智能系统透明度、以用户为中心和稳健性的重要性,特别是对于高风险应用。作为回应,我们介绍了XentricAI的进展,这是一种可解释的手势识别(HGR)系统,旨在满足这些监管要求。XentricAI解决了HGR中的基本挑战,例如使用可解释的AI方法解决黑箱模型的不透明性,以及通过迁移学习技术处理现实世界数据的分布变化。我们扩展了现有的基于雷达的HGR数据集,增加了28,000个新手势,这些手势来自不同地点的多个用户,包括24,000个不在分布范围内的手势。利用这个真实世界的数据集,我们通过集成一个变分自动编码器模块来增强XentricAI的能力,以改进手势异常检测,并结合用户特定的动态阈值。这种整合使识别异常手势的能力提高了11.50%。我们的广泛评估表明,在描述这些异常方面的成功率为97.5%,显著提高了系统的可解释性。此外,迁移学习技术的实施大大提高了用户的适应性,平均性能至少提高了15.17%。这项工作通过提供技术进步和法规遵从性,为可信赖的人工智能系统的开发做出了贡献,提供了符合欧盟人工智能法案要求的商业可行解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信