Weiqing Lin , Xiren Miao , Jing Chen , Pengbin Duan , Mingxin Ye , Yong Xu , Hao Jiang , Yanzhen Lu
{"title":"Forecasting in-core power distributions in nuclear power plants via a spatial–temporal hierarchical-directed network","authors":"Weiqing Lin , Xiren Miao , Jing Chen , Pengbin Duan , Mingxin Ye , Yong Xu , Hao Jiang , Yanzhen Lu","doi":"10.1016/j.pnucene.2025.105795","DOIUrl":null,"url":null,"abstract":"<div><div>As nuclear power plants (NPPs) undertake more peak regulation tasks to handle high new energy penetration and overcapacity, precise forecasting of in-core power distributions is essential for optimal control and safe operation. However, current works lack an effective strategy for predicting high-resolution power distributions and neglect in-core spatial correlations. This study proposes a spatial–temporal hierarchical-directed network (ST-HDN) for forecasting power distributions, whose prediction strategy is guided by the physical model. To characterize spatial correlations and causal relationships among physical quantities, the hierarchical-directed graph is designed and combined with neutron and power signals for input to the ST-HDN. Concretely, the ST-HDN integrates three sub-modules: a temporal-differencing layer to enhance representation of subtle variations; a multi-dilated convolutional network to extract dynamic temporal features; and a graph convolutional network to propagate spatial adjacent information, further predicting power nodes at various positions. The predicted power nodes are post-processed to derive future power distributions. Experiments on two peak regulation scenarios from a real-world NPP illustrate that the ST-HDN outperforms various state-of-the-art methods in 10-, 20-, and 30-min ahead forecasting.</div></div>","PeriodicalId":20617,"journal":{"name":"Progress in Nuclear Energy","volume":"186 ","pages":"Article 105795"},"PeriodicalIF":3.3000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0149197025001933","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
As nuclear power plants (NPPs) undertake more peak regulation tasks to handle high new energy penetration and overcapacity, precise forecasting of in-core power distributions is essential for optimal control and safe operation. However, current works lack an effective strategy for predicting high-resolution power distributions and neglect in-core spatial correlations. This study proposes a spatial–temporal hierarchical-directed network (ST-HDN) for forecasting power distributions, whose prediction strategy is guided by the physical model. To characterize spatial correlations and causal relationships among physical quantities, the hierarchical-directed graph is designed and combined with neutron and power signals for input to the ST-HDN. Concretely, the ST-HDN integrates three sub-modules: a temporal-differencing layer to enhance representation of subtle variations; a multi-dilated convolutional network to extract dynamic temporal features; and a graph convolutional network to propagate spatial adjacent information, further predicting power nodes at various positions. The predicted power nodes are post-processed to derive future power distributions. Experiments on two peak regulation scenarios from a real-world NPP illustrate that the ST-HDN outperforms various state-of-the-art methods in 10-, 20-, and 30-min ahead forecasting.
期刊介绍:
Progress in Nuclear Energy is an international review journal covering all aspects of nuclear science and engineering. In keeping with the maturity of nuclear power, articles on safety, siting and environmental problems are encouraged, as are those associated with economics and fuel management. However, basic physics and engineering will remain an important aspect of the editorial policy. Articles published are either of a review nature or present new material in more depth. They are aimed at researchers and technically-oriented managers working in the nuclear energy field.
Please note the following:
1) PNE seeks high quality research papers which are medium to long in length. Short research papers should be submitted to the journal Annals in Nuclear Energy.
2) PNE reserves the right to reject papers which are based solely on routine application of computer codes used to produce reactor designs or explain existing reactor phenomena. Such papers, although worthy, are best left as laboratory reports whereas Progress in Nuclear Energy seeks papers of originality, which are archival in nature, in the fields of mathematical and experimental nuclear technology, including fission, fusion (blanket physics, radiation damage), safety, materials aspects, economics, etc.
3) Review papers, which may occasionally be invited, are particularly sought by the journal in these fields.