Declan Rickard , Muhammad Ashad Kabir , Nusrat Homaira
{"title":"Machine learning-based approaches for distinguishing viral and bacterial pneumonia in paediatrics: A scoping review","authors":"Declan Rickard , Muhammad Ashad Kabir , Nusrat Homaira","doi":"10.1016/j.cmpb.2025.108802","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objective:</h3><div>Pneumonia is the leading cause of hospitalisation and mortality among children under five, particularly in low-resource settings. Accurate differentiation between viral and bacterial pneumonia is essential for guiding appropriate treatment, yet it remains challenging due to overlapping clinical and radiographic features. Advances in machine learning (ML), particularly deep learning (DL), have shown promise in classifying pneumonia using chest X-ray (CXR) images. This scoping review summarises the evidence on ML techniques for classifying viral and bacterial pneumonia using CXR images in paediatric patients.</div></div><div><h3>Methods:</h3><div>This scoping review was conducted following the Joanna Briggs Institute methodology and the PRISMA-ScR guidelines. A comprehensive search was performed in PubMed, Embase, and Scopus to identify studies involving children (0–18 years) with pneumonia diagnosed through CXR, using ML models for binary or multiclass classification. Data extraction included ML models, dataset characteristics, and performance metrics.</div></div><div><h3>Results:</h3><div>A total of 35 studies, published between 2018 and 2025, were included in this review. Of these, 31 studies used the publicly available Kermany dataset, raising concerns about overfitting and limited generalisability to broader, real-world clinical populations. Most studies (n=33) used convolutional neural networks (CNNs) for pneumonia classification. While many models demonstrated promising performance, significant variability was observed due to differences in methodologies, dataset sizes, and validation strategies, complicating direct comparisons. For binary classification (viral vs bacterial pneumonia), a median accuracy of 92.3% (range: 80.8% to 97.9%) was reported. For multiclass classification (healthy, viral pneumonia, and bacterial pneumonia), the median accuracy was 91.8% (range: 76.8% to 99.7%).</div></div><div><h3>Conclusions:</h3><div>Current evidence is constrained by a predominant reliance on a single dataset and variability in methodologies, which limit the generalisability and clinical applicability of findings. To address these limitations, future research should focus on developing diverse and representative datasets while adhering to standardised reporting guidelines. Such efforts are essential to improve the reliability, reproducibility, and translational potential of machine learning models in clinical settings.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"268 ","pages":"Article 108802"},"PeriodicalIF":4.9000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260725002196","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Background and Objective:
Pneumonia is the leading cause of hospitalisation and mortality among children under five, particularly in low-resource settings. Accurate differentiation between viral and bacterial pneumonia is essential for guiding appropriate treatment, yet it remains challenging due to overlapping clinical and radiographic features. Advances in machine learning (ML), particularly deep learning (DL), have shown promise in classifying pneumonia using chest X-ray (CXR) images. This scoping review summarises the evidence on ML techniques for classifying viral and bacterial pneumonia using CXR images in paediatric patients.
Methods:
This scoping review was conducted following the Joanna Briggs Institute methodology and the PRISMA-ScR guidelines. A comprehensive search was performed in PubMed, Embase, and Scopus to identify studies involving children (0–18 years) with pneumonia diagnosed through CXR, using ML models for binary or multiclass classification. Data extraction included ML models, dataset characteristics, and performance metrics.
Results:
A total of 35 studies, published between 2018 and 2025, were included in this review. Of these, 31 studies used the publicly available Kermany dataset, raising concerns about overfitting and limited generalisability to broader, real-world clinical populations. Most studies (n=33) used convolutional neural networks (CNNs) for pneumonia classification. While many models demonstrated promising performance, significant variability was observed due to differences in methodologies, dataset sizes, and validation strategies, complicating direct comparisons. For binary classification (viral vs bacterial pneumonia), a median accuracy of 92.3% (range: 80.8% to 97.9%) was reported. For multiclass classification (healthy, viral pneumonia, and bacterial pneumonia), the median accuracy was 91.8% (range: 76.8% to 99.7%).
Conclusions:
Current evidence is constrained by a predominant reliance on a single dataset and variability in methodologies, which limit the generalisability and clinical applicability of findings. To address these limitations, future research should focus on developing diverse and representative datasets while adhering to standardised reporting guidelines. Such efforts are essential to improve the reliability, reproducibility, and translational potential of machine learning models in clinical settings.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.