{"title":"Transformer-based document-level discourse processing: Exploiting prior language knowledge and hierarchical parsing","authors":"Zhengyuan Liu , Ke Shi , Nancy F. Chen","doi":"10.1016/j.csl.2025.101809","DOIUrl":null,"url":null,"abstract":"<div><div>Document-level discourse parsing, in accordance with the Rhetorical Structure Theory (RST), remains notoriously challenging. Challenges include the deep structure of document-level discourse trees, the requirement of subtle semantic judgments, and the lack of large-scale training corpora. To address such challenges, we propose to exploit robust representations derived from multiple levels of granularity across syntax and semantics, and in turn incorporate such representations in an end-to-end encoder–decoder neural architecture for more resourceful discourse processing. In particular, we first use a pre-trained contextual language model that embodies high-order and long-range correlation to enable finer-grain semantic, syntactic, and organizational representations. We further encode such representations with boundary and hierarchical information to obtain more refined modeling for document-level discourse processing. Experimental results show that our parser achieves the state-of-the-art performance, approaching human-level performance on the benchmarked English RST dataset. We also demonstrate how the proposed framework can be extended effectively to multilingual RST discourse parsing and abstractive document summarization tasks.</div></div>","PeriodicalId":50638,"journal":{"name":"Computer Speech and Language","volume":"94 ","pages":"Article 101809"},"PeriodicalIF":3.1000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Speech and Language","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885230825000348","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Document-level discourse parsing, in accordance with the Rhetorical Structure Theory (RST), remains notoriously challenging. Challenges include the deep structure of document-level discourse trees, the requirement of subtle semantic judgments, and the lack of large-scale training corpora. To address such challenges, we propose to exploit robust representations derived from multiple levels of granularity across syntax and semantics, and in turn incorporate such representations in an end-to-end encoder–decoder neural architecture for more resourceful discourse processing. In particular, we first use a pre-trained contextual language model that embodies high-order and long-range correlation to enable finer-grain semantic, syntactic, and organizational representations. We further encode such representations with boundary and hierarchical information to obtain more refined modeling for document-level discourse processing. Experimental results show that our parser achieves the state-of-the-art performance, approaching human-level performance on the benchmarked English RST dataset. We also demonstrate how the proposed framework can be extended effectively to multilingual RST discourse parsing and abstractive document summarization tasks.
期刊介绍:
Computer Speech & Language publishes reports of original research related to the recognition, understanding, production, coding and mining of speech and language.
The speech and language sciences have a long history, but it is only relatively recently that large-scale implementation of and experimentation with complex models of speech and language processing has become feasible. Such research is often carried out somewhat separately by practitioners of artificial intelligence, computer science, electronic engineering, information retrieval, linguistics, phonetics, or psychology.