Dual-Branch Retrieval Network for Satellite Cloud Image Classification Based on Multilevel Semantic Information

Jiezhi Lv;Nan Wu;Wei Jin;Randi Fu
{"title":"Dual-Branch Retrieval Network for Satellite Cloud Image Classification Based on Multilevel Semantic Information","authors":"Jiezhi Lv;Nan Wu;Wei Jin;Randi Fu","doi":"10.1109/LGRS.2025.3564728","DOIUrl":null,"url":null,"abstract":"The weather system has a profound impact on human activities. Conducting research on satellite cloud image classification can provide critical parameters for weather forecasting, climate analysis, and severe weather detection. However, conventional satellite cloud image classification methods typically neglect higher level semantic constraints and rarely incorporate decision-level adaptive calibration, resulting in confusion among visually similar categories and restricting interpretable, content-based inference. Here, we propose a dual-branch retrieval network with multilevel semantic information (DBR-MSI) to address these gaps. DBR-MSI jointly optimizes high-level semantics (e.g., broad meteorological and surface categories) and low-level semantics (e.g., specific cloud or surface attributes), and we explicitly highlight critical semantic content via a gradient-based attention sharing module. Moreover, a retrieval-based inference approach driven by high-level semantic guidance supports interpretable content reasoning and adaptive decision calibration, which in turn allows the proposed method to deliver enhanced robustness and efficient integration of additional data. Experimental results on two satellite cloud image datasets confirm that DBR-MSI exhibits stronger interpretability and achieves overall accuracy (OA) gains of 1.06% and 0.39% over the best competing methods.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10977839/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The weather system has a profound impact on human activities. Conducting research on satellite cloud image classification can provide critical parameters for weather forecasting, climate analysis, and severe weather detection. However, conventional satellite cloud image classification methods typically neglect higher level semantic constraints and rarely incorporate decision-level adaptive calibration, resulting in confusion among visually similar categories and restricting interpretable, content-based inference. Here, we propose a dual-branch retrieval network with multilevel semantic information (DBR-MSI) to address these gaps. DBR-MSI jointly optimizes high-level semantics (e.g., broad meteorological and surface categories) and low-level semantics (e.g., specific cloud or surface attributes), and we explicitly highlight critical semantic content via a gradient-based attention sharing module. Moreover, a retrieval-based inference approach driven by high-level semantic guidance supports interpretable content reasoning and adaptive decision calibration, which in turn allows the proposed method to deliver enhanced robustness and efficient integration of additional data. Experimental results on two satellite cloud image datasets confirm that DBR-MSI exhibits stronger interpretability and achieves overall accuracy (OA) gains of 1.06% and 0.39% over the best competing methods.
基于多级语义信息的卫星云图分类双分支检索网络
天气系统对人类活动有着深远的影响。开展卫星云图分类研究,可以为天气预报、气候分析和灾害性天气探测提供关键参数。然而,传统的卫星云图分类方法通常忽略了更高层次的语义约束,很少纳入决策级自适应校准,导致视觉上相似的类别之间的混淆,并限制了可解释的基于内容的推理。在这里,我们提出了一个具有多层语义信息(DBR-MSI)的双分支检索网络来解决这些空白。DBR-MSI联合优化了高级语义(例如,广泛的气象和地表类别)和低级语义(例如,特定的云或地表属性),并通过基于梯度的注意力共享模块明确地突出了关键语义内容。此外,由高级语义指导驱动的基于检索的推理方法支持可解释的内容推理和自适应决策校准,这反过来又允许所提出的方法提供增强的鲁棒性和对附加数据的有效集成。在两个卫星云图数据集上的实验结果证实,DBR-MSI具有更强的可解释性,总体精度(OA)比最佳竞争方法分别提高了1.06%和0.39%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信