Jiale Wang;Zhaoyong Mao;Yayu Ma;Bo Liang;Zhengchao Yan;Baowei Song;Aiguo Patrick Hu
{"title":"Tri-Coupled Dual-LCC Compensation Network for Wireless Charging of AUVs With High Misalignment Tolerance","authors":"Jiale Wang;Zhaoyong Mao;Yayu Ma;Bo Liang;Zhengchao Yan;Baowei Song;Aiguo Patrick Hu","doi":"10.1109/TPEL.2025.3568836","DOIUrl":null,"url":null,"abstract":"Inductive power transfer (IPT) technology has gained significant attention due to its broad range of applications, including wireless charging of autonomous underwater vehicles (AUVs). During the charging process, an IPT system needs to provide stable output power, even when the AUV experiences coupling misalignments. This article proposes a dual-LCC compensation network based on a tri-coupled coil structure for achieving a constant voltage (CV) output under misalignments and load variations. The primary side consists of three power transmission coils coupled with the secondary coil, and the mutual inductance between the coils can significantly affect the output power. By optimizing the coil parameters, the system can achieve a wide misalignment tolerance and stable CV output. A mathematical model is established, and zero voltage switching (ZVS) characteristic obtained. A 160-W prototype is built to verify the effectiveness of proposed system. The experimental results show that the system output voltage achieves both load independence and high misalignment tolerance. Under normalized axial displacement of 0.7 and radial displacement of 0.8, the output fluctuation remains below 5% at 91.14% of power efficiency.","PeriodicalId":13267,"journal":{"name":"IEEE Transactions on Power Electronics","volume":"40 9","pages":"14124-14133"},"PeriodicalIF":6.5000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10995228/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Inductive power transfer (IPT) technology has gained significant attention due to its broad range of applications, including wireless charging of autonomous underwater vehicles (AUVs). During the charging process, an IPT system needs to provide stable output power, even when the AUV experiences coupling misalignments. This article proposes a dual-LCC compensation network based on a tri-coupled coil structure for achieving a constant voltage (CV) output under misalignments and load variations. The primary side consists of three power transmission coils coupled with the secondary coil, and the mutual inductance between the coils can significantly affect the output power. By optimizing the coil parameters, the system can achieve a wide misalignment tolerance and stable CV output. A mathematical model is established, and zero voltage switching (ZVS) characteristic obtained. A 160-W prototype is built to verify the effectiveness of proposed system. The experimental results show that the system output voltage achieves both load independence and high misalignment tolerance. Under normalized axial displacement of 0.7 and radial displacement of 0.8, the output fluctuation remains below 5% at 91.14% of power efficiency.
期刊介绍:
The IEEE Transactions on Power Electronics journal covers all issues of widespread or generic interest to engineers who work in the field of power electronics. The Journal editors will enforce standards and a review policy equivalent to the IEEE Transactions, and only papers of high technical quality will be accepted. Papers which treat new and novel device, circuit or system issues which are of generic interest to power electronics engineers are published. Papers which are not within the scope of this Journal will be forwarded to the appropriate IEEE Journal or Transactions editors. Examples of papers which would be more appropriately published in other Journals or Transactions include: 1) Papers describing semiconductor or electron device physics. These papers would be more appropriate for the IEEE Transactions on Electron Devices. 2) Papers describing applications in specific areas: e.g., industry, instrumentation, utility power systems, aerospace, industrial electronics, etc. These papers would be more appropriate for the Transactions of the Society which is concerned with these applications. 3) Papers describing magnetic materials and magnetic device physics. These papers would be more appropriate for the IEEE Transactions on Magnetics. 4) Papers on machine theory. These papers would be more appropriate for the IEEE Transactions on Power Systems. While original papers of significant technical content will comprise the major portion of the Journal, tutorial papers and papers of historical value are also reviewed for publication.