Transfer learning of optimal QAOA parameters in combinatorial optimization

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
J. A. Montañez-Barrera, Dennis Willsch, Kristel Michielsen
{"title":"Transfer learning of optimal QAOA parameters in combinatorial optimization","authors":"J. A. Montañez-Barrera,&nbsp;Dennis Willsch,&nbsp;Kristel Michielsen","doi":"10.1007/s11128-025-04743-4","DOIUrl":null,"url":null,"abstract":"<div><p>Solving combinatorial optimization problems (COPs) is a promising application of quantum computation, with the quantum approximate optimization algorithm (QAOA) being one of the most studied quantum algorithms for solving them. However, multiple factors make the parameter search of the QAOA a hard optimization problem. In this work, we study transfer learning (TL), a methodology to reuse pre-trained QAOA parameters of one problem instance into different COP instances. This methodology can be used to alleviate the necessity of classical optimization to find good parameters for individual problems. To this end, we select small cases of the traveling salesman problem (TSP), the bin packing problem (BPP), the knapsack problem (KP), the weighted maximum cut (MaxCut) problem, the maximal independent set (MIS) problem, and portfolio optimization (PO), and find optimal <span>\\(\\beta \\)</span> and <span>\\(\\gamma \\)</span> parameters for <i>p</i> layers. We compare how well the parameters found for one problem adapt to the others. Among the different problems, BPP is the one that produces the best transferable parameters, maintaining the probability of finding the optimal solution above a quadratic speedup over random guessing for problem sizes up to 42 qubits and <span>\\(p = 10\\)</span> layers. Using the BPP parameters, we perform experiments on IonQ Harmony and Aria, Rigetti Aspen-M-3, and IBM Brisbane of MIS instances for up to 18 qubits. The results indicate that IonQ Aria yields the best overlap with the ideal probability distribution. Additionally, we show that cross-platform TL is possible using the D-Wave Advantage quantum annealer with the parameters found for BPP. We show an improvement in performance compared to the default protocols for MIS with up to 170 qubits. Our results suggest that there are QAOA parameters that generalize well for different COPs and annealing protocols.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 5","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04743-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Solving combinatorial optimization problems (COPs) is a promising application of quantum computation, with the quantum approximate optimization algorithm (QAOA) being one of the most studied quantum algorithms for solving them. However, multiple factors make the parameter search of the QAOA a hard optimization problem. In this work, we study transfer learning (TL), a methodology to reuse pre-trained QAOA parameters of one problem instance into different COP instances. This methodology can be used to alleviate the necessity of classical optimization to find good parameters for individual problems. To this end, we select small cases of the traveling salesman problem (TSP), the bin packing problem (BPP), the knapsack problem (KP), the weighted maximum cut (MaxCut) problem, the maximal independent set (MIS) problem, and portfolio optimization (PO), and find optimal \(\beta \) and \(\gamma \) parameters for p layers. We compare how well the parameters found for one problem adapt to the others. Among the different problems, BPP is the one that produces the best transferable parameters, maintaining the probability of finding the optimal solution above a quadratic speedup over random guessing for problem sizes up to 42 qubits and \(p = 10\) layers. Using the BPP parameters, we perform experiments on IonQ Harmony and Aria, Rigetti Aspen-M-3, and IBM Brisbane of MIS instances for up to 18 qubits. The results indicate that IonQ Aria yields the best overlap with the ideal probability distribution. Additionally, we show that cross-platform TL is possible using the D-Wave Advantage quantum annealer with the parameters found for BPP. We show an improvement in performance compared to the default protocols for MIS with up to 170 qubits. Our results suggest that there are QAOA parameters that generalize well for different COPs and annealing protocols.

组合优化中最优QAOA参数的迁移学习
求解组合优化问题(COPs)是量子计算的一个很有前途的应用,量子近似优化算法(QAOA)是求解组合优化问题研究最多的量子算法之一。然而,由于多种因素的影响,QAOA的参数搜索成为一个较难的优化问题。在这项工作中,我们研究了迁移学习(TL),一种将一个问题实例的预训练QAOA参数重用到不同COP实例的方法。这种方法可以减轻经典优化方法为单个问题寻找最佳参数的必要性。为此,我们选取旅行商问题(TSP)、装箱问题(BPP)、背包问题(KP)、加权最大切割问题(MaxCut)、最大独立集问题(MIS)和投资组合优化问题(PO)的小案例,找到p层的最优\(\beta \)和\(\gamma \)参数。我们比较为一个问题找到的参数与其他问题的适应程度。在不同的问题中,BPP是产生最佳可转移参数的问题,对于大小为42量子位和\(p = 10\)层的问题,BPP保持找到最优解的概率高于随机猜测的二次加速。使用BPP参数,我们在IonQ Harmony和Aria, Rigetti Aspen-M-3和IBM Brisbane的MIS实例上进行了多达18个量子位的实验。结果表明,IonQ Aria在理想概率分布下产生了最好的重叠。此外,我们证明了跨平台TL是可能的,使用D-Wave优势量子退火器与BPP找到的参数。我们展示了与具有多达170量子位的MIS默认协议相比性能的改进。我们的结果表明,对于不同的cop和退火协议,QAOA参数具有很好的泛化性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信