Peng Song, Huaiyu Chen, Kaixin Cui, Junzheng Wang, Dawei Shi
{"title":"Meta-learning for dynamic multi-robot task scheduling","authors":"Peng Song, Huaiyu Chen, Kaixin Cui, Junzheng Wang, Dawei Shi","doi":"10.1016/j.cor.2025.107109","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we investigate the problem of dynamic task scheduling for multi-robot systems, in which a large number of robots collaborate to achieve a multi-objective optimization goal in transportation, rescue, <em>etc</em>. Considering the dynamic characteristics of tasks and robots in industrial scenarios, a reinforcement learning scheduling algorithm based on a meta-learning framework is proposed, which learns to interact with the environment to obtain an optimal solution. A DenseNet-like deep Q-network is designed to mine high level features of a state matrix, whose size changes dynamically with the scenario settings. By optimizing network parameters in inner and outer meta learning loops, the Q-network learns from the experience of multiple scheduling scenarios and obtains a generalized initialization parameter, which can be fine-tuned online to adapt to a new multi-robot system. The effectiveness of the proposed meta-scheduling approach is illustrated by numerical simulations in 9 different multi robot scenarios, achieving a 11.0% higher objective score and a 63.9% reduction in training time compared with a standard deep Q-Learning algorithm.</div></div>","PeriodicalId":10542,"journal":{"name":"Computers & Operations Research","volume":"182 ","pages":"Article 107109"},"PeriodicalIF":4.1000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Operations Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305054825001376","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we investigate the problem of dynamic task scheduling for multi-robot systems, in which a large number of robots collaborate to achieve a multi-objective optimization goal in transportation, rescue, etc. Considering the dynamic characteristics of tasks and robots in industrial scenarios, a reinforcement learning scheduling algorithm based on a meta-learning framework is proposed, which learns to interact with the environment to obtain an optimal solution. A DenseNet-like deep Q-network is designed to mine high level features of a state matrix, whose size changes dynamically with the scenario settings. By optimizing network parameters in inner and outer meta learning loops, the Q-network learns from the experience of multiple scheduling scenarios and obtains a generalized initialization parameter, which can be fine-tuned online to adapt to a new multi-robot system. The effectiveness of the proposed meta-scheduling approach is illustrated by numerical simulations in 9 different multi robot scenarios, achieving a 11.0% higher objective score and a 63.9% reduction in training time compared with a standard deep Q-Learning algorithm.
期刊介绍:
Operations research and computers meet in a large number of scientific fields, many of which are of vital current concern to our troubled society. These include, among others, ecology, transportation, safety, reliability, urban planning, economics, inventory control, investment strategy and logistics (including reverse logistics). Computers & Operations Research provides an international forum for the application of computers and operations research techniques to problems in these and related fields.