Integrated deep learning paradigm for comprehensive lung cancer segmentation and classification using mask R-CNN and CNN models

Abimbola G. Akintola , Kolawole Y. Obiwusi , Yusuf O. Olatunde , Mohammed Usman , Faizol G. Aberuagba , Muhammed A. Adebisi , Shamsudeen A. Adebayo
{"title":"Integrated deep learning paradigm for comprehensive lung cancer segmentation and classification using mask R-CNN and CNN models","authors":"Abimbola G. Akintola ,&nbsp;Kolawole Y. Obiwusi ,&nbsp;Yusuf O. Olatunde ,&nbsp;Mohammed Usman ,&nbsp;Faizol G. Aberuagba ,&nbsp;Muhammed A. Adebisi ,&nbsp;Shamsudeen A. Adebayo","doi":"10.1016/j.fraope.2025.100278","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an integrated deep learning approach that combines Mask Region-based Convolutional Neural Networks (Mask R-CNN) for lung nodule segmentation with Convolutional Neural Networks (CNN) for malignancy classification in CT scan images. A key innovation of this study is the design of a streamlined hybrid pipeline that automates both localization and diagnosis, reducing reliance on manual preprocessing. The model was trained on a curated dataset from publicly available repositories, with careful preprocessing and data augmentation techniques applied to enhance generalization. The proposed method achieved 95.6 % accuracy, with a precision of 94.8 %, recall of 94.3 %, F1-score of 97.5 %, and AUC of 94.5 %, outperforming individual CNN and Mask R-CNN models. Comparative analysis with state-of-the-art methods in literature demonstrates the effectiveness of this hybrid approach. The results suggest that the model is not only accurate but also scalable for clinical implementation in automated lung cancer diagnosis. Future work will consider gathering more wide and diverse datasets, including various stages of lung cancer and other lung-related disorders, to further improve model accuracy and robustness.</div></div>","PeriodicalId":100554,"journal":{"name":"Franklin Open","volume":"11 ","pages":"Article 100278"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Franklin Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773186325000684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an integrated deep learning approach that combines Mask Region-based Convolutional Neural Networks (Mask R-CNN) for lung nodule segmentation with Convolutional Neural Networks (CNN) for malignancy classification in CT scan images. A key innovation of this study is the design of a streamlined hybrid pipeline that automates both localization and diagnosis, reducing reliance on manual preprocessing. The model was trained on a curated dataset from publicly available repositories, with careful preprocessing and data augmentation techniques applied to enhance generalization. The proposed method achieved 95.6 % accuracy, with a precision of 94.8 %, recall of 94.3 %, F1-score of 97.5 %, and AUC of 94.5 %, outperforming individual CNN and Mask R-CNN models. Comparative analysis with state-of-the-art methods in literature demonstrates the effectiveness of this hybrid approach. The results suggest that the model is not only accurate but also scalable for clinical implementation in automated lung cancer diagnosis. Future work will consider gathering more wide and diverse datasets, including various stages of lung cancer and other lung-related disorders, to further improve model accuracy and robustness.
基于掩模R-CNN和CNN模型的肺癌综合分割分类集成深度学习范式
本文提出了一种集成的深度学习方法,将基于Mask区域的卷积神经网络(Mask R-CNN)用于肺结节分割和卷积神经网络(CNN)用于CT扫描图像的恶性分类相结合。这项研究的一个关键创新是设计了一种流线型混合管道,可以自动定位和诊断,减少对人工预处理的依赖。该模型是在一个来自公开可用存储库的精心策划的数据集上进行训练的,并使用了仔细的预处理和数据增强技术来增强泛化。该方法的准确率为95.6%,精密度为94.8%,召回率为94.3%,f1分数为97.5%,AUC为94.5%,优于单个CNN和Mask R-CNN模型。与文献中最先进的方法进行比较分析,证明了这种混合方法的有效性。结果表明,该模型不仅准确,而且具有可扩展性,可用于肺癌自动诊断的临床实施。未来的工作将考虑收集更广泛和多样化的数据集,包括不同阶段的肺癌和其他肺部相关疾病,以进一步提高模型的准确性和稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信