Two-step upconversion-driven PDT/CDT cooperative phototherapeutic platform based on surface magnetic field modulation

IF 3.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Changqiu Ma , Anqi Han , Daheng Jiang , Qiuyan Wang , Linghui Zeng , Lixin Zhu , Mingya Yang , Xiaoliang Xu
{"title":"Two-step upconversion-driven PDT/CDT cooperative phototherapeutic platform based on surface magnetic field modulation","authors":"Changqiu Ma ,&nbsp;Anqi Han ,&nbsp;Daheng Jiang ,&nbsp;Qiuyan Wang ,&nbsp;Linghui Zeng ,&nbsp;Lixin Zhu ,&nbsp;Mingya Yang ,&nbsp;Xiaoliang Xu","doi":"10.1016/j.bpc.2025.107454","DOIUrl":null,"url":null,"abstract":"<div><div>Photodynamic therapy utilizes photosensitizer to generate reactive oxygen species (ROS) under irradiation of light for anticancer. However, due to the strong absorption of visible light by tissues and organs, photodynamic therapy meets challenges in deep tissues. Herein, we propose an upconversion-driven photodynamic therapy combined with chemodynamic therapy based on UCNP@SiO<sub>2</sub>@Fe<sub>3</sub>O<sub>4</sub>@MC540. Upon the excitation of 980 nm laser, the visible emission of upconversion nanoparticles activates MC540 to produce ROS, which is enhanced by Fe<sub>3</sub>O<sub>4</sub> through magnetic field modulation. Subsequently, Fe<sub>3</sub>O<sub>4</sub> degrades under acidic conditions to produce ·OH <em>via</em> Fenton-reaction for chemodynamic therapy. The <em>in vitro</em> and <em>in vivo</em> experiments indicate that the two-step cooperative strategy exhibits significant anticancer efficacy. Besides, Finite Difference Time Domain (FDTD) simulation reveals that the enhancement stems from surface electric field and light absorption. It offers a deeper understanding of phototherapeutic process.</div></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"323 ","pages":"Article 107454"},"PeriodicalIF":3.3000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301462225000663","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Photodynamic therapy utilizes photosensitizer to generate reactive oxygen species (ROS) under irradiation of light for anticancer. However, due to the strong absorption of visible light by tissues and organs, photodynamic therapy meets challenges in deep tissues. Herein, we propose an upconversion-driven photodynamic therapy combined with chemodynamic therapy based on UCNP@SiO2@Fe3O4@MC540. Upon the excitation of 980 nm laser, the visible emission of upconversion nanoparticles activates MC540 to produce ROS, which is enhanced by Fe3O4 through magnetic field modulation. Subsequently, Fe3O4 degrades under acidic conditions to produce ·OH via Fenton-reaction for chemodynamic therapy. The in vitro and in vivo experiments indicate that the two-step cooperative strategy exhibits significant anticancer efficacy. Besides, Finite Difference Time Domain (FDTD) simulation reveals that the enhancement stems from surface electric field and light absorption. It offers a deeper understanding of phototherapeutic process.

Abstract Image

基于表面磁场调制的两步上变频驱动PDT/CDT协同光疗平台
光动力疗法利用光敏剂在光照射下产生活性氧(ROS)来抗癌。然而,由于组织和器官对可见光的强烈吸收,光动力疗法在深层组织中遇到了挑战。在此,我们提出了一种基于UCNP@SiO2@Fe3O4@MC540的上转换驱动的光动力疗法结合化学动力疗法。在980 nm激光激发下,上转换纳米粒子的可见光发射激活MC540产生ROS, Fe3O4通过磁场调制增强了ROS的产生。随后,Fe3O4在酸性条件下通过fenton反应降解生成·OH进行化学动力学治疗。体外和体内实验表明,两步协同策略具有显著的抗癌效果。时域有限差分(FDTD)仿真结果表明,表面电场和光吸收是增强的主要原因。它提供了光疗过程的更深层次的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biophysical chemistry
Biophysical chemistry 生物-生化与分子生物学
CiteScore
6.10
自引率
10.50%
发文量
121
审稿时长
20 days
期刊介绍: Biophysical Chemistry publishes original work and reviews in the areas of chemistry and physics directly impacting biological phenomena. Quantitative analysis of the properties of biological macromolecules, biologically active molecules, macromolecular assemblies and cell components in terms of kinetics, thermodynamics, spatio-temporal organization, NMR and X-ray structural biology, as well as single-molecule detection represent a major focus of the journal. Theoretical and computational treatments of biomacromolecular systems, macromolecular interactions, regulatory control and systems biology are also of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信