Early identification of bulbar motor dysfunction in ALS: An approach using AFM signal decomposition

IF 2.4 3区 计算机科学 Q2 ACOUSTICS
Shaik Mulla Shabber , Mohan Bansal
{"title":"Early identification of bulbar motor dysfunction in ALS: An approach using AFM signal decomposition","authors":"Shaik Mulla Shabber ,&nbsp;Mohan Bansal","doi":"10.1016/j.specom.2025.103246","DOIUrl":null,"url":null,"abstract":"<div><div>Amyotrophic lateral sclerosis (ALS) is an aggressive neurodegenerative disorder that impacts the nerve cells in the brain and spinal cord that control muscle movements. Early ALS symptoms include speech and swallowing difficulties, and sadly, the disease is incurable and fatal in some instances. This study aims to construct a predictive model for identifying speech dysarthria and bulbar motor dysfunction in ALS patients, using speech signals as a non-invasive biomarker. Utilizing an amplitude and frequency modulated (AFM) signal decomposition model, the study identifies distinctive characteristics crucial for monitoring and diagnosing ALS. The study focuses on classifying ALS patients and healthy controls (HC) through a machine-learning approach, employing the TORGO database for analysis. Recognizing speech signals as potential biomarkers for ALS detection, the study aims to achieve early identification without invasive measures. An ensemble learning classifier attains a remarkable 97% accuracy in distinguishing between ALS and HC based on features extracted using the AFM signal model.</div></div>","PeriodicalId":49485,"journal":{"name":"Speech Communication","volume":"172 ","pages":"Article 103246"},"PeriodicalIF":2.4000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Speech Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167639325000615","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Amyotrophic lateral sclerosis (ALS) is an aggressive neurodegenerative disorder that impacts the nerve cells in the brain and spinal cord that control muscle movements. Early ALS symptoms include speech and swallowing difficulties, and sadly, the disease is incurable and fatal in some instances. This study aims to construct a predictive model for identifying speech dysarthria and bulbar motor dysfunction in ALS patients, using speech signals as a non-invasive biomarker. Utilizing an amplitude and frequency modulated (AFM) signal decomposition model, the study identifies distinctive characteristics crucial for monitoring and diagnosing ALS. The study focuses on classifying ALS patients and healthy controls (HC) through a machine-learning approach, employing the TORGO database for analysis. Recognizing speech signals as potential biomarkers for ALS detection, the study aims to achieve early identification without invasive measures. An ensemble learning classifier attains a remarkable 97% accuracy in distinguishing between ALS and HC based on features extracted using the AFM signal model.
肌萎缩性侧索硬化症患者球运动功能障碍的早期识别:一种利用AFM信号分解的方法
肌萎缩性侧索硬化症(ALS)是一种侵袭性神经退行性疾病,影响大脑和脊髓中控制肌肉运动的神经细胞。早期的ALS症状包括说话和吞咽困难,不幸的是,这种疾病在某些情况下是无法治愈的,甚至是致命的。本研究旨在利用语音信号作为非侵入性生物标志物,构建识别ALS患者言语构音障碍和球运动功能障碍的预测模型。利用振幅和频率调制(AFM)信号分解模型,该研究确定了监测和诊断ALS的关键特征。该研究的重点是通过机器学习方法对ALS患者和健康对照(HC)进行分类,采用TORGO数据库进行分析。该研究将语音信号视为ALS检测的潜在生物标志物,旨在实现无创检测的早期识别。基于使用AFM信号模型提取的特征,集成学习分类器在区分ALS和HC方面达到了惊人的97%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Speech Communication
Speech Communication 工程技术-计算机:跨学科应用
CiteScore
6.80
自引率
6.20%
发文量
94
审稿时长
19.2 weeks
期刊介绍: Speech Communication is an interdisciplinary journal whose primary objective is to fulfil the need for the rapid dissemination and thorough discussion of basic and applied research results. The journal''s primary objectives are: • to present a forum for the advancement of human and human-machine speech communication science; • to stimulate cross-fertilization between different fields of this domain; • to contribute towards the rapid and wide diffusion of scientifically sound contributions in this domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信