Joel Bercu , Alejandra Trejo-Martin , Connie Chen , Maik Schuler , Jennifer Cheung , Tetyana Cheairs , Anthony M. Lynch , Dean Thomas , Andreas Czich , Aisar Atrakchi , Timothy J. McGovern , Robert H. Heflich , Alisa Vespa , Roland Froetschl , Yi Yang , Raj D. Gandhi , Joanne Elloway , Verena Ziegler , Anna Hellmann , Michelle Schaefer , Raechel Puglisi
{"title":"HESI GTTC ring trial: Concordance between Ames and rodent carcinogenicity outcomes for N-nitrosamines (NAs) with rat and hamster metabolic conditions","authors":"Joel Bercu , Alejandra Trejo-Martin , Connie Chen , Maik Schuler , Jennifer Cheung , Tetyana Cheairs , Anthony M. Lynch , Dean Thomas , Andreas Czich , Aisar Atrakchi , Timothy J. McGovern , Robert H. Heflich , Alisa Vespa , Roland Froetschl , Yi Yang , Raj D. Gandhi , Joanne Elloway , Verena Ziegler , Anna Hellmann , Michelle Schaefer , Raechel Puglisi","doi":"10.1016/j.yrtph.2025.105835","DOIUrl":null,"url":null,"abstract":"<div><div>A multi-sector study (i.e., Ring Trial) was designed to improve the <em>in vitro</em> detection of <em>N</em>-nitrosamine (NA)-associated mutagenicity by optimizing the bacterial reverse mutation (i.e., Ames) assay protocol and testing various conditions on the sensitivity and specificity for the prediction of rodent carcinogenicity. A total of 29 NAs and 3 <em>N</em>-nitroso drug-like compounds from different structural classes and carcinogenicity outcomes were tested (two independent laboratories per compound) across 5 bacterial strains using a 30-min pre-incubation protocol. To evaluate the impact of different metabolic activating systems (MASs), testing conditions included the use of 10 or 30 % liver S9 fractions prepared from rats or hamsters pretreated with inducers of enzymatic activity. Results indicate that <em>E. coli</em> and <em>Salmonella typhimurium</em> strains detecting single base pair mutations, coupled with MASs containing 30 % hamster S9s were the most sensitive (90 %) for identifying NAs that are rodent carcinogens. Regarding MAS combinations, the highest sensitivity was 30 % rat and 30 % hamster (93 %), but has low specificity (45 %), with good laboratory agreement for the Ames calls (91 %). DMSO and water were considered suitable solvents, except for small-molecular weight alkyl NAs. These results will support harmonized Ames testing of NAs, giving high confidence for a negative result.</div></div>","PeriodicalId":20852,"journal":{"name":"Regulatory Toxicology and Pharmacology","volume":"161 ","pages":"Article 105835"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regulatory Toxicology and Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0273230025000650","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
引用次数: 0
Abstract
A multi-sector study (i.e., Ring Trial) was designed to improve the in vitro detection of N-nitrosamine (NA)-associated mutagenicity by optimizing the bacterial reverse mutation (i.e., Ames) assay protocol and testing various conditions on the sensitivity and specificity for the prediction of rodent carcinogenicity. A total of 29 NAs and 3 N-nitroso drug-like compounds from different structural classes and carcinogenicity outcomes were tested (two independent laboratories per compound) across 5 bacterial strains using a 30-min pre-incubation protocol. To evaluate the impact of different metabolic activating systems (MASs), testing conditions included the use of 10 or 30 % liver S9 fractions prepared from rats or hamsters pretreated with inducers of enzymatic activity. Results indicate that E. coli and Salmonella typhimurium strains detecting single base pair mutations, coupled with MASs containing 30 % hamster S9s were the most sensitive (90 %) for identifying NAs that are rodent carcinogens. Regarding MAS combinations, the highest sensitivity was 30 % rat and 30 % hamster (93 %), but has low specificity (45 %), with good laboratory agreement for the Ames calls (91 %). DMSO and water were considered suitable solvents, except for small-molecular weight alkyl NAs. These results will support harmonized Ames testing of NAs, giving high confidence for a negative result.
期刊介绍:
Regulatory Toxicology and Pharmacology publishes peer reviewed articles that involve the generation, evaluation, and interpretation of experimental animal and human data that are of direct importance and relevance for regulatory authorities with respect to toxicological and pharmacological regulations in society. All peer-reviewed articles that are published should be devoted to improve the protection of human health and environment. Reviews and discussions are welcomed that address legal and/or regulatory decisions with respect to risk assessment and management of toxicological and pharmacological compounds on a scientific basis. It addresses an international readership of scientists, risk assessors and managers, and other professionals active in the field of human and environmental health.
Types of peer-reviewed articles published:
-Original research articles of relevance for regulatory aspects covering aspects including, but not limited to:
1.Factors influencing human sensitivity
2.Exposure science related to risk assessment
3.Alternative toxicological test methods
4.Frameworks for evaluation and integration of data in regulatory evaluations
5.Harmonization across regulatory agencies
6.Read-across methods and evaluations
-Contemporary Reviews on policy related Research issues
-Letters to the Editor
-Guest Editorials (by Invitation)