Shuo Zhou , Yao Liu , Ning Zhang , Linmao Sun , Changyong Ji , Tianming Cui , Qi Chu , Shugeng Zhang , Jiabei Wang , Lianxin Liu
{"title":"Glycolytic enzyme PFKFB4 governs lipolysis by promoting de novo lipogenesis to drive the progression of hepatocellular carcinoma","authors":"Shuo Zhou , Yao Liu , Ning Zhang , Linmao Sun , Changyong Ji , Tianming Cui , Qi Chu , Shugeng Zhang , Jiabei Wang , Lianxin Liu","doi":"10.1016/j.canlet.2025.217774","DOIUrl":null,"url":null,"abstract":"<div><div>Hepatocellular carcinoma (HCC) is among the most aggressive malignancies, marked by high recurrence rates and limited treatment efficacy, especially in HBV-associated HCC (HBV-HCC). This subtype exhibits pronounced metabolic reprogramming, with lipid synthesis playing a pivotal role in driving tumor aggressiveness and therapeutic resistance. However, the molecular mechanisms underlying this metabolic shift remain unclear. In our study, analysis of the LIHC-TCGA database and comparisons between HCC tissues and adjacent peri-tumoral tissues revealed that 6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 4 (PFKFB4) is significantly upregulated in HBV-HCC. Moreover, elevated PFKFB4 expression correlates with poorer prognosis and unfavorable overall survival among HBV-HCC patients. Functional assays demonstrated that PFKFB4 promotes HCC proliferation by enhancing glycolysis and de novo lipid synthesis. Notably, PFKFB4 not only increases glycolytic flux but also upregulates sterol regulatory element-binding protein 1 (SREBP1) expression via its enzymatic activity. Mechanistically, PFKFB4 suppresses phosphorylated AMP-activated protein kinase (p-AMPK) through enhanced aerobic glycolysis, which in turn stimulates the level of SREBP1. Collectively, these findings position PFKFB4 as a critical mediator of metabolic reprogramming in HBV-HCC and a promising therapeutic target.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"626 ","pages":"Article 217774"},"PeriodicalIF":9.1000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304383525003404","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hepatocellular carcinoma (HCC) is among the most aggressive malignancies, marked by high recurrence rates and limited treatment efficacy, especially in HBV-associated HCC (HBV-HCC). This subtype exhibits pronounced metabolic reprogramming, with lipid synthesis playing a pivotal role in driving tumor aggressiveness and therapeutic resistance. However, the molecular mechanisms underlying this metabolic shift remain unclear. In our study, analysis of the LIHC-TCGA database and comparisons between HCC tissues and adjacent peri-tumoral tissues revealed that 6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 4 (PFKFB4) is significantly upregulated in HBV-HCC. Moreover, elevated PFKFB4 expression correlates with poorer prognosis and unfavorable overall survival among HBV-HCC patients. Functional assays demonstrated that PFKFB4 promotes HCC proliferation by enhancing glycolysis and de novo lipid synthesis. Notably, PFKFB4 not only increases glycolytic flux but also upregulates sterol regulatory element-binding protein 1 (SREBP1) expression via its enzymatic activity. Mechanistically, PFKFB4 suppresses phosphorylated AMP-activated protein kinase (p-AMPK) through enhanced aerobic glycolysis, which in turn stimulates the level of SREBP1. Collectively, these findings position PFKFB4 as a critical mediator of metabolic reprogramming in HBV-HCC and a promising therapeutic target.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.