Abu Kowshir Bitto , Md. Hasan Imam Bijoy , Kamrul Hassan Shakil , Aka Das , Khalid Been Badruzzaman Biplob , Imran Mahmud , Syed Md. Minhaz Hossain
{"title":"GastroEndoNet: Comprehensive endoscopy image dataset for GERD and polyp detection","authors":"Abu Kowshir Bitto , Md. Hasan Imam Bijoy , Kamrul Hassan Shakil , Aka Das , Khalid Been Badruzzaman Biplob , Imran Mahmud , Syed Md. Minhaz Hossain","doi":"10.1016/j.dib.2025.111572","DOIUrl":null,"url":null,"abstract":"<div><div>The gastrointestinal (GI) system is fundamental to human health, supporting digestion, nutrient absorption, and waste elimination. Disruptions in GI function, such as Gastroesophageal Reflux Disease (GERD) and gastrointestinal polyps, can lead to significant health complications if not diagnosed and managed early. However, manual interpretation of endoscopic images is time-consuming and prone to human error, highlighting the need for automated diagnostic tools. In this study, we introduce a comprehensive dataset of 24,036 high-quality endoscopic images, categorized into four classes: GERD, GERD Normal, Polyp, and Polyp Normal. This dataset is designed to facilitate research in automated detection and classification of these conditions through machine learning algorithms. The dataset consists of 4006 primary images collected following endoscopic procedures, which were augmented using six distinct techniques, expanding the total number of images to 24,036. It includes 5844 images of GERD cases (974primary images), 6618 images of GERD Normal (1103 primary images), 4674 images of Polyps (779 primary images), and 6900 images of Polyp Normal (1150 primary images). These images, pre-processed and resized to a resolution of 512 × 512 pixels, were obtained from Zainul Haque Sikder Women’s Medical College & Hospital (Pvt.) Ltd. and saved in JPG format. This dataset addresses a critical gap in the availability of large, diverse, and well-labelled medical image datasets for training AI-driven healthcare solutions. It provides an invaluable resource for developing machine learning models aimed at the automatic diagnosis, classification, and detection of GERD and polyps, potentially improving the speed and accuracy of clinical decision-making. By leveraging this dataset, researchers can contribute to enhanced diagnostic tools that could significantly improve healthcare outcomes and patient quality of life in the field of gastroenterology.</div></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"60 ","pages":"Article 111572"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235234092500304X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The gastrointestinal (GI) system is fundamental to human health, supporting digestion, nutrient absorption, and waste elimination. Disruptions in GI function, such as Gastroesophageal Reflux Disease (GERD) and gastrointestinal polyps, can lead to significant health complications if not diagnosed and managed early. However, manual interpretation of endoscopic images is time-consuming and prone to human error, highlighting the need for automated diagnostic tools. In this study, we introduce a comprehensive dataset of 24,036 high-quality endoscopic images, categorized into four classes: GERD, GERD Normal, Polyp, and Polyp Normal. This dataset is designed to facilitate research in automated detection and classification of these conditions through machine learning algorithms. The dataset consists of 4006 primary images collected following endoscopic procedures, which were augmented using six distinct techniques, expanding the total number of images to 24,036. It includes 5844 images of GERD cases (974primary images), 6618 images of GERD Normal (1103 primary images), 4674 images of Polyps (779 primary images), and 6900 images of Polyp Normal (1150 primary images). These images, pre-processed and resized to a resolution of 512 × 512 pixels, were obtained from Zainul Haque Sikder Women’s Medical College & Hospital (Pvt.) Ltd. and saved in JPG format. This dataset addresses a critical gap in the availability of large, diverse, and well-labelled medical image datasets for training AI-driven healthcare solutions. It provides an invaluable resource for developing machine learning models aimed at the automatic diagnosis, classification, and detection of GERD and polyps, potentially improving the speed and accuracy of clinical decision-making. By leveraging this dataset, researchers can contribute to enhanced diagnostic tools that could significantly improve healthcare outcomes and patient quality of life in the field of gastroenterology.
期刊介绍:
Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.