Yane Araújo , Eudes Barboza , José Carlos de Albuquerque , Pedro Ubilla
{"title":"Existence results for some elliptic problems in RN including variable exponents above the critical growth","authors":"Yane Araújo , Eudes Barboza , José Carlos de Albuquerque , Pedro Ubilla","doi":"10.1016/j.na.2025.113831","DOIUrl":null,"url":null,"abstract":"<div><div>We establish existence results for the following class of equations involving variable exponents <span><span><span><math><mrow><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>u</mi><mo>=</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mrow><mo>(</mo><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>)</mo></mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mi>λ</mi><msup><mrow><mrow><mo>|</mo><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow><mrow><mi>q</mi><mrow><mo>(</mo><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>)</mo></mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mi>λ</mi><mo>≥</mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>N</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and <span><math><mrow><mi>p</mi><mo>,</mo><mi>q</mi><mo>:</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mo>+</mo><mi>∞</mi><mo>)</mo></mrow><mo>→</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mo>+</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span> are radial continuous functions which satisfy suitable conditions. For this purpose, it is sufficient to consider either subcriticality or criticality within a small region near the origin. Surprisingly, outside this region, the nonlinearity may oscillate between subcritical, critical, and supercritical growth in the Sobolev sense. Our approach enables the use of the variational methods to tackle problems with variable exponents in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> without imposing restrictions outside of a neighborhood of zero.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"259 ","pages":"Article 113831"},"PeriodicalIF":1.3000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25000859","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We establish existence results for the following class of equations involving variable exponents where , and are radial continuous functions which satisfy suitable conditions. For this purpose, it is sufficient to consider either subcriticality or criticality within a small region near the origin. Surprisingly, outside this region, the nonlinearity may oscillate between subcritical, critical, and supercritical growth in the Sobolev sense. Our approach enables the use of the variational methods to tackle problems with variable exponents in without imposing restrictions outside of a neighborhood of zero.
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.