Good projective witnesses

IF 0.6 2区 数学 Q2 LOGIC
Vera Fischer , Sy David Friedman , David Schrittesser , Asger Törnquist
{"title":"Good projective witnesses","authors":"Vera Fischer ,&nbsp;Sy David Friedman ,&nbsp;David Schrittesser ,&nbsp;Asger Törnquist","doi":"10.1016/j.apal.2025.103606","DOIUrl":null,"url":null,"abstract":"<div><div>We develop a new forcing notion for adjoining self-coding cofinitary permutations and use it to show that consistently, the minimal cardinality <span><math><msub><mrow><mi>a</mi></mrow><mrow><mtext>g</mtext></mrow></msub></math></span> of a maximal cofinitary group (MCG) is strictly between <span><math><msub><mrow><mi>ℵ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><mi>c</mi></math></span>, and there is a <span><math><msubsup><mrow><mi>Π</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span>-definable MCG of this cardinality. Here <span><math><msubsup><mrow><mi>Π</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>1</mn></mrow></msubsup></math></span> is optimal, making this result a natural counterpart to the Borel MCG of Horowitz and Shelah. Our theorem has its analogue in the realm of maximal almost disjoint (MAD) families, extending a line of results regarding the definability properties of MAD families in models with large continuum.</div></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"176 8","pages":"Article 103606"},"PeriodicalIF":0.6000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007225000557","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a new forcing notion for adjoining self-coding cofinitary permutations and use it to show that consistently, the minimal cardinality ag of a maximal cofinitary group (MCG) is strictly between 1 and c, and there is a Π21-definable MCG of this cardinality. Here Π21 is optimal, making this result a natural counterpart to the Borel MCG of Horowitz and Shelah. Our theorem has its analogue in the realm of maximal almost disjoint (MAD) families, extending a line of results regarding the definability properties of MAD families in models with large continuum.
好的投影证人
本文提出了相邻自编码共限置换的一个新的强制概念,并利用它证明了最大共限群(MCG)的最小基数ag严格地存在于λ 1和λ c之间,并且存在这个基数的Π21-definable MCG。这里Π21是最优的,使这个结果与霍洛维茨和希拉的Borel MCG自然对应。我们的定理在极大几乎不相交族(MAD)领域有类似的结果,扩展了关于大连续统模型中极大几乎不相交族的可定义性的一系列结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
78
审稿时长
200 days
期刊介绍: The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信