Evaluating large language model workflows in clinical decision support for triage and referral and diagnosis

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Farieda Gaber, Maqsood Shaik, Fabio Allega, Agnes Julia Bilecz, Felix Busch, Kelsey Goon, Vedran Franke, Altuna Akalin
{"title":"Evaluating large language model workflows in clinical decision support for triage and referral and diagnosis","authors":"Farieda Gaber, Maqsood Shaik, Fabio Allega, Agnes Julia Bilecz, Felix Busch, Kelsey Goon, Vedran Franke, Altuna Akalin","doi":"10.1038/s41746-025-01684-1","DOIUrl":null,"url":null,"abstract":"<p>Accurate medical decision-making is critical for both patients and clinicians. Patients often struggle to interpret their symptoms, determine their severity, and select the right specialist. Simultaneously, clinicians face challenges in integrating complex patient data to make timely, accurate diagnoses. Recent advances in large language models (LLMs) offer the potential to bridge this gap by supporting decision-making for both patients and healthcare providers. In this study, we benchmark multiple LLM versions and an LLM-based workflow incorporating retrieval-augmented generation (RAG) on a curated dataset of 2000 medical cases derived from the Medical Information Mart for Intensive Care database. Our findings show that these LLMs are capable of providing personalized insights into likely diagnoses, suggesting appropriate specialists, and assessing urgent care needs. These models may also support clinicians in refining diagnoses and decision-making, offering a promising approach to improving patient outcomes and streamlining healthcare delivery.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"38 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01684-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate medical decision-making is critical for both patients and clinicians. Patients often struggle to interpret their symptoms, determine their severity, and select the right specialist. Simultaneously, clinicians face challenges in integrating complex patient data to make timely, accurate diagnoses. Recent advances in large language models (LLMs) offer the potential to bridge this gap by supporting decision-making for both patients and healthcare providers. In this study, we benchmark multiple LLM versions and an LLM-based workflow incorporating retrieval-augmented generation (RAG) on a curated dataset of 2000 medical cases derived from the Medical Information Mart for Intensive Care database. Our findings show that these LLMs are capable of providing personalized insights into likely diagnoses, suggesting appropriate specialists, and assessing urgent care needs. These models may also support clinicians in refining diagnoses and decision-making, offering a promising approach to improving patient outcomes and streamlining healthcare delivery.

Abstract Image

评估大型语言模型工作流程在临床决策支持中的分诊、转诊和诊断
准确的医疗决策对患者和临床医生都至关重要。患者常常难以解释自己的症状,确定其严重程度,并选择合适的专科医生。同时,临床医生在整合复杂的患者数据以做出及时、准确的诊断方面面临挑战。大型语言模型(llm)的最新进展通过支持患者和医疗保健提供者的决策提供了弥合这一差距的潜力。在这项研究中,我们对多个LLM版本和一个基于LLM的工作流进行了基准测试,该工作流结合了检索增强生成(RAG),该工作流基于来自重症监护数据库的医疗信息集市的2000个医疗病例的策划数据集。我们的研究结果表明,这些法学硕士能够为可能的诊断提供个性化的见解,建议合适的专家,并评估紧急护理需求。这些模型还可以帮助临床医生改进诊断和决策,提供一种有希望的方法来改善患者的结果和简化医疗保健服务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信