Merve Yarıcı, Furkan Cantürk, Serdar Dursun, Hatice Nur Aydın, Muhammed Erkan Karabekmez
{"title":"RSEA: A Web Server for Pathway Enrichment Analysis of Metabolic Reaction Sets","authors":"Merve Yarıcı, Furkan Cantürk, Serdar Dursun, Hatice Nur Aydın, Muhammed Erkan Karabekmez","doi":"10.1002/bit.29020","DOIUrl":null,"url":null,"abstract":"Changes in biological pathways provide essential clues about metabolism. Genome-scale metabolic models (GEM) are network-based templates that computationally describe all stoichiometric associations and gene-protein reaction (GPR) relations found in an organism for all its metabolic genes and metabolites. Using reaction stoichiometry as input, GEMs mathematically simulate metabolic reaction fluxes occurring in an organism and predict changes in the metabolic system under the relevant condition. Multiple tools and approaches in the literature can capture fluxes sensitive to a given condition by using GEMs. However, functional enrichment analysis of these reaction lists in a systems biology perspective is not straightforward. Here, we introduce RSEA to annotate given reaction sets to significantly related metabolic pathways: Reaction Set Enrichment Analysis web server tool. RSEA converts given reaction list derived from GEMs into proper reaction identifiers and statistically analyze its enrichment in metabolic pathways. RSEA is designed to provide researchers with a practical and user-friendly platform to explore and interpret sets of reactions in biological pathways and freely available online (https://rseatool.com/).","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"39 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bit.29020","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Changes in biological pathways provide essential clues about metabolism. Genome-scale metabolic models (GEM) are network-based templates that computationally describe all stoichiometric associations and gene-protein reaction (GPR) relations found in an organism for all its metabolic genes and metabolites. Using reaction stoichiometry as input, GEMs mathematically simulate metabolic reaction fluxes occurring in an organism and predict changes in the metabolic system under the relevant condition. Multiple tools and approaches in the literature can capture fluxes sensitive to a given condition by using GEMs. However, functional enrichment analysis of these reaction lists in a systems biology perspective is not straightforward. Here, we introduce RSEA to annotate given reaction sets to significantly related metabolic pathways: Reaction Set Enrichment Analysis web server tool. RSEA converts given reaction list derived from GEMs into proper reaction identifiers and statistically analyze its enrichment in metabolic pathways. RSEA is designed to provide researchers with a practical and user-friendly platform to explore and interpret sets of reactions in biological pathways and freely available online (https://rseatool.com/).
期刊介绍:
Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include:
-Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering
-Animal-cell biotechnology, including media development
-Applied aspects of cellular physiology, metabolism, and energetics
-Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology
-Biothermodynamics
-Biofuels, including biomass and renewable resource engineering
-Biomaterials, including delivery systems and materials for tissue engineering
-Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control
-Biosensors and instrumentation
-Computational and systems biology, including bioinformatics and genomic/proteomic studies
-Environmental biotechnology, including biofilms, algal systems, and bioremediation
-Metabolic and cellular engineering
-Plant-cell biotechnology
-Spectroscopic and other analytical techniques for biotechnological applications
-Synthetic biology
-Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems
The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.