{"title":"Small Polaron-Induced Ultrafast Ferroelectric Restoration in BiFeO3","authors":"Wenfan Chen, Tian Wang, Chun-Chieh Yu, Yuancheng Jing, Xiaosong Li, Wei Xiong","doi":"10.1103/physrevx.15.021046","DOIUrl":null,"url":null,"abstract":"In this report, we apply a suite of ultrafast spectroscopic techniques and advanced calculations to reveal the interplay between electronic and lattice degrees of freedom in ferroelectric BiFeO</a:mi></a:mrow>3</a:mn></a:mrow></a:msub></a:mrow></a:math>. Using transient sum frequency generation spectroscopy, which is sensitive to electronic polarizations, we observe a transient electronic dipole reduction upon optical excitation which recovers at 0.5 and 10 ps timescale. The time-dependent density functional theory calculation reveals that both ligand-metal charge transfer and local excitation transition occurred upon photo excitation. To reveal the nature of electronic dipole restoration, we employ transient extreme ultraviolet (EUV) spectroscopy—an element-specific ultrafast technique that follows charge dynamics of Bi, Fe, and O altogether. The transient EUV dynamics observed both ultrafast free charge carrier relaxation to excitons, as well as polaron formation. However, a timescale comparison suggests that only the polaron formation is responsible for the 0.5 ps electronic dipole restoration, whereas the faster electronic relaxation does not contribute to the ferroelectric property changes. Multireference configuration interaction calculation further corroborates this result by showing both Fe and Bi atoms shift from the ground state equilibrium—leading to the polaron formation. Our result disentangles the multidegrees of freedom in ultrafast ferroelectric modulation and identifies the pivotal motion—a local polaron formation—for the fast ferroelectric recovery. It provides crucial insights on the specific lattice distortion that could modulate properties or phase transitions of condensed matter materials. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"20 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021046","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this report, we apply a suite of ultrafast spectroscopic techniques and advanced calculations to reveal the interplay between electronic and lattice degrees of freedom in ferroelectric BiFeO3. Using transient sum frequency generation spectroscopy, which is sensitive to electronic polarizations, we observe a transient electronic dipole reduction upon optical excitation which recovers at 0.5 and 10 ps timescale. The time-dependent density functional theory calculation reveals that both ligand-metal charge transfer and local excitation transition occurred upon photo excitation. To reveal the nature of electronic dipole restoration, we employ transient extreme ultraviolet (EUV) spectroscopy—an element-specific ultrafast technique that follows charge dynamics of Bi, Fe, and O altogether. The transient EUV dynamics observed both ultrafast free charge carrier relaxation to excitons, as well as polaron formation. However, a timescale comparison suggests that only the polaron formation is responsible for the 0.5 ps electronic dipole restoration, whereas the faster electronic relaxation does not contribute to the ferroelectric property changes. Multireference configuration interaction calculation further corroborates this result by showing both Fe and Bi atoms shift from the ground state equilibrium—leading to the polaron formation. Our result disentangles the multidegrees of freedom in ultrafast ferroelectric modulation and identifies the pivotal motion—a local polaron formation—for the fast ferroelectric recovery. It provides crucial insights on the specific lattice distortion that could modulate properties or phase transitions of condensed matter materials. Published by the American Physical Society2025
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.