Small Polaron-Induced Ultrafast Ferroelectric Restoration in BiFeO3

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Wenfan Chen, Tian Wang, Chun-Chieh Yu, Yuancheng Jing, Xiaosong Li, Wei Xiong
{"title":"Small Polaron-Induced Ultrafast Ferroelectric Restoration in BiFeO3","authors":"Wenfan Chen, Tian Wang, Chun-Chieh Yu, Yuancheng Jing, Xiaosong Li, Wei Xiong","doi":"10.1103/physrevx.15.021046","DOIUrl":null,"url":null,"abstract":"In this report, we apply a suite of ultrafast spectroscopic techniques and advanced calculations to reveal the interplay between electronic and lattice degrees of freedom in ferroelectric BiFeO</a:mi></a:mrow>3</a:mn></a:mrow></a:msub></a:mrow></a:math>. Using transient sum frequency generation spectroscopy, which is sensitive to electronic polarizations, we observe a transient electronic dipole reduction upon optical excitation which recovers at 0.5 and 10 ps timescale. The time-dependent density functional theory calculation reveals that both ligand-metal charge transfer and local excitation transition occurred upon photo excitation. To reveal the nature of electronic dipole restoration, we employ transient extreme ultraviolet (EUV) spectroscopy—an element-specific ultrafast technique that follows charge dynamics of Bi, Fe, and O altogether. The transient EUV dynamics observed both ultrafast free charge carrier relaxation to excitons, as well as polaron formation. However, a timescale comparison suggests that only the polaron formation is responsible for the 0.5 ps electronic dipole restoration, whereas the faster electronic relaxation does not contribute to the ferroelectric property changes. Multireference configuration interaction calculation further corroborates this result by showing both Fe and Bi atoms shift from the ground state equilibrium—leading to the polaron formation. Our result disentangles the multidegrees of freedom in ultrafast ferroelectric modulation and identifies the pivotal motion—a local polaron formation—for the fast ferroelectric recovery. It provides crucial insights on the specific lattice distortion that could modulate properties or phase transitions of condensed matter materials. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"20 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021046","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this report, we apply a suite of ultrafast spectroscopic techniques and advanced calculations to reveal the interplay between electronic and lattice degrees of freedom in ferroelectric BiFeO3. Using transient sum frequency generation spectroscopy, which is sensitive to electronic polarizations, we observe a transient electronic dipole reduction upon optical excitation which recovers at 0.5 and 10 ps timescale. The time-dependent density functional theory calculation reveals that both ligand-metal charge transfer and local excitation transition occurred upon photo excitation. To reveal the nature of electronic dipole restoration, we employ transient extreme ultraviolet (EUV) spectroscopy—an element-specific ultrafast technique that follows charge dynamics of Bi, Fe, and O altogether. The transient EUV dynamics observed both ultrafast free charge carrier relaxation to excitons, as well as polaron formation. However, a timescale comparison suggests that only the polaron formation is responsible for the 0.5 ps electronic dipole restoration, whereas the faster electronic relaxation does not contribute to the ferroelectric property changes. Multireference configuration interaction calculation further corroborates this result by showing both Fe and Bi atoms shift from the ground state equilibrium—leading to the polaron formation. Our result disentangles the multidegrees of freedom in ultrafast ferroelectric modulation and identifies the pivotal motion—a local polaron formation—for the fast ferroelectric recovery. It provides crucial insights on the specific lattice distortion that could modulate properties or phase transitions of condensed matter materials. Published by the American Physical Society 2025
小极化子诱导的BiFeO3超快铁电恢复
在本报告中,我们应用了一套超快光谱技术和先进的计算来揭示铁电BiFeO3中电子自由度和晶格自由度之间的相互作用。利用对电子极化敏感的瞬态和频产生谱,我们观察到在光激发下的瞬态电子偶极子减少,并在0.5和10ps时间尺度上恢复。随时间密度泛函理论计算表明,光激发同时发生了配-金属电荷转移和局部激发跃迁。为了揭示电子偶极恢复的本质,我们采用了瞬态极紫外(EUV)光谱——一种元素特定的超快技术,可以同时跟踪Bi, Fe和O的电荷动力学。瞬态EUV动力学观察到超快自由电荷载流子弛豫到激子,以及极化子的形成。然而,时间尺度的比较表明,只有极化子的形成对0.5 ps电子偶极子的恢复负责,而更快的电子弛豫对铁电性质的变化没有贡献。多参考组态相互作用计算进一步证实了这一结果,表明Fe和Bi原子都从基态平衡转移,导致极化子的形成。我们的结果解开了超快铁电调制中的多个自由度,并确定了快速铁电恢复的关键运动-局部极化子形成。它提供了对特定晶格畸变的重要见解,可以调制凝聚态材料的性质或相变。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信