{"title":"On the Optimal Rate of Vortex Stretching for Axisymmetric Euler Flows Without Swirl","authors":"Deokwoo Lim, In-Jee Jeong","doi":"10.1007/s00205-025-02103-1","DOIUrl":null,"url":null,"abstract":"<div><p>For axisymmetric flows without swirl and compactly supported initial vorticity, we prove the upper bound of <span>\\(t^{4/3}\\)</span> for the growth of the vorticity maximum, which was conjectured by Childress (Phys. D 237(14-17):1921-1925, 2008) and supported by numerical computations from Childress–Gilbert–Valiant (J. Fluid Mech. 805:1-30, 2016). The key is to estimate the velocity maximum by the kinetic energy together with conserved quantities involving the vorticity.\n</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"249 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-025-02103-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-025-02103-1","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
For axisymmetric flows without swirl and compactly supported initial vorticity, we prove the upper bound of \(t^{4/3}\) for the growth of the vorticity maximum, which was conjectured by Childress (Phys. D 237(14-17):1921-1925, 2008) and supported by numerical computations from Childress–Gilbert–Valiant (J. Fluid Mech. 805:1-30, 2016). The key is to estimate the velocity maximum by the kinetic energy together with conserved quantities involving the vorticity.
期刊介绍:
The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.